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Continuous bag of words model

So,  from here  on  so,  none of  this  that  we covered  had anything  to  do  with  neural

networks say, but it was important to understand the context and I will tell you why it

was important to go over the traditional way of learning word representations and then

we will  see  how it  ties  to  the  modern  way  or  the  neural  network  way  of  learning

representations right.

So,  we  will  start  with  the  first  neural  network  based  model  for  learning  word

representation, which is known as the Continuous bag of words model.

(Refer Slide Time: 00:37)

So, just to set the context the methods that we have seen so far are known as count based

models because they rely on these co occurrence counts for learning representations of

words, and the methods that we are going to see now are called prediction based models

and it will become clear shortly why the term prediction, and how they learn the word

representations right.



So, in a way in the original thing there was no learning involved of course, you can say

that you were trying to learn these eigenvectors and eigenvalues and so on, but it was not

in the same way as it be as we have been learning parameters of a neural network and so

on right it was not in the same spirit. But now once I do these second type of models, this

distinction would become very clear one why is there a learning involved and why they

are prediction based models.

(Refer Slide Time: 01:24)

So, the story is we are going to look at continuous bag of words model, then something

known as skip gram. So, this is the famous word 2 vec model which you guys have

already started looking at then we look at GloVe word embeddings which is some kind of

a hybrid between the count based models and the prediction based models. And then we

see how to evaluate word embeddings and then end with this depressing note that good

old SVD is just fine right. So, all the progress that has happened in the past 5-6 years,

you could just use SVD and still go by, but if you do that you will probably not get a job

right you have to learn these things.



(Refer Slide Time: 01:59)

So, now let us start with the continuous bag of words model. So, consider this task and

just bear me for a few slides that when why this is connected to our problem and all that.

So,  I  am going to  consider  ka task,  we are here to  predict  the n th  word given the

previous n minus 1 words right. As this is something that you do regularly sometimes

even in the class when you are whatsapping or smsing. So, this is what you do right you

start typing he sat on her and you get this prompt that the next word should be chair or

something like that right.

Now, you can think of this as a classification problem; tell me why you can think of this

as a classification problem, can you tell me what is. So, remember that we have always

thought of this that there is always a y there is always an x, and then we are trying to

learn this relation from x to y. So, given this example can you tell me what is x here and

what is y here? 

Student: (Refer Time: 02:51). 

Everyone is clear about that right. So, this is x and this is y now; I made a statement that

I could think of this as a classification problem right. So, the minute I say classification

what is the y that comes to your mind or dash hot by.

Student: (Refer Time: 03:07). 



Y not I, anything else would have been inappropriate, but. So, one hot y is what you

would expect there right and now what is the size of this one hot vector?

Student: Size of (Refer time: 03:19).

Size of the vocabulary. So, we are trying to predict one of the words in the vocabulary.

So, you see why this is a multi class classification problem you see that there are many

classes and you want to select one of these class. Now the moment I say classification I

give you an x and y, I will start asking me who will give me the training data for this. So,

can you think of training data for this any corpus similar to the one that you are creating

right?

(Refer Slide Time: 03:46)

In specific what you will do is, suppose you have framed it as the following problem that

you are given for words and you want to predict the fifth word. So, in general I have call

it as that you are given n minus 1 words and you want to predict the n th word the n that I

am considering here is 4.

Now, what is going to be the training data for this? If you take any corpus that you have

built anything right consider all five word windows from there do not get too engrossed

in the story. So, there are four the first four words you can treat as x and the fifth word

would be your y right. So, you can construct many such x comma y pairs from the raw

corpus that you are creating, any 5 word window and you can keep sliding this window



right what I mean by that? This is your first training instance x comma y, this could be

your second training instance. So, this could be these overlapping training instances you

keep sliding this window and you will get many many training instances you see that.

So, this task the advantage is that, given the size of the web and so on at least for popular

languages the training data almost comes for free right. Compare this to MNIST or any

other task where you have to actually acquire these labels that this is an apple, this is a

banana and so on here you get the training data for free just need to scrape it from the

web know. So, window size is something that you will set right whether you want to

learn four word windows or what do you mean we do not know the window size no.

So, this again there is a lot of existing literature in the traditional NLP, where various and

lot of work has been done to figure out what is the right n. So, in most NLP task right if

you want to predict the next word, a three word window is enough actually. If you know

the last three words and you can try this as a mental exercise right; if you know three

words you do not really need to know the words before that. So, this is the mark of

assumption with where this is a trigram dependency in the words right.

So,  this  n  is  not  really  so difficult,  and in  the default  tool  that  you guys would  try

probably they take the value of n is 7 that is an overkill, but that is again it comes from a

lot of existing literature in NLP right this is not a this task is not deep learning broad

right this task is a simple language modeling task, which has existed for many many

years right from probably 1950s or 60s or something.

So, this is all n word windows in your corpus as I said training data comes for free and

for ease of illustration we will now focus on the case when n is equal to 2; that means, I

am given one word and I want to predict the next word ok.



(Refer Slide Time: 06:18)

And we will see how to model this using a neural network. So, these are the 2 questions

which I need to tell you how to model this task and what is the connection between this

task and our original task of learning word representations these are the 2 things that I

am going to answer.

(Refer Slide Time: 06:28)

So, we will model this problem using a feed forward neural network, what is the input?

One word, so say the word is sat I am going to represent it using a one hot vector and

what is the output? I want to predict a distribution over all the words in the vocabulary



and I want to predict I want to pick the word which has the maximum probability that is

how you did. So, for example, in the case when you had this classification problem of

banana, apple, orange, mango, you predicted a distribution over these 4 classes and then

picked the one which had the highest probability exact same idea here it just that instead

of 4 classes now you have V classes and your V is very large but it is trying to learn a

distribution over there.

And you know that in this case or the example that you are considering on is the actual

next word. So, you type sat and the next word is on, and probably leading to sat on the

chair or something like that. So, this is what you would want to maximize. I have given

you the input, I have given you the output give me a neural network to model this, there

are lot of hints in the diagram itself right you see some space between the input and the

output.

So, what will you put in the middle layer we will put a middle layer there right. Is this an

way of modeling this task. I have an input I want to predict an output, so, I just use a

regular  feed forward  neural  network  and let  us  analyze  these  parameters  a  bit  more

carefully right. So, I am something known as W context, I have something known as W

word I am already using some notations from the SVD lecture.  There at the end we

ended  with  W word  and  W context  right  it  is  not  clear  why  I  am using  the  same

notations, but it will become clear in some time, but let us look at their dimensions right.

So, we have this one hot vector I have a parameter W context which I am going to learn

right and its size is k cross V. So, what does that mean? This matrix is going to multiply

by the vector and give me a k dimensional output right is that clear. So, I have this is of

size V because always keep surprising me I do not know why you cannot do this R this is

a V dimensional vector, you multiply it by a k cross V vector. So, you do W into x. So,

you will get a k dimensional vector. So, this is k dimensional you have a k dimensional

hidden representation.

And from there now having captured this hidden representation, you are trying to predict

which is the next possible class. This is the same as any other thing right if you had done

the image classification or the n th digit  classification,  you had this 784 dimensional

input vector, you pass it through a hidden layer and then you predicted one of the 10

classes, there is nothing magic here it is the same thing that you have done seen before.



(Refer Slide Time: 09:17)

How many if you get this and what are the parameters W context and W word. And we

are going to focus on these parameters and understand what they actually mean.

(Refer Slide Time: 09:26)

So, what is the product W context into x given that x is a one hot vector. So, I will tell

you this suppose the i th entry is hot here, how many if you say it is the i th column of W

context. So, it is simply the i th column of W context why? Because you have this W

context matrix you take a one hot vector which has the second entry as hot, if you do this



multiplication you basically get the second column of W and you can just see it everyone

gets this now how many if you get this now?

So, if you have a one hot vector if its i th entry is on u multiply it by a matrix, you will

get the i th column of the matrix. So, if the i th word is present in the input then the i th

element of the one hot vector is on and the i th column of W context can be would be

selected. So, then can what can you tell me about the i th column of W context? You see

there is this one to one correspondence between words in your vocabulary and columns

of the W context matrix; how many columns has W context have? V columns how many

words are there in your vocabulary? V. Any one word is on only one column will get

selected and that is a unique column it is not going to change right. So, there is a one to

one mapping between the columns of W context and the words in your vocabulary; that

means, the columns of W context are the are the vector representations.

Do you know these vector representations? No these are parameters of your network. So,

they will they will be learned how we will see. So, you see the intuition for W context

setting it up this way. So, now, I have set up the problem in a way that by parameter

matrix directly gives me the word representations, but any kind of learning has to be

driven by some objective. So, what is that objective it is already clear to a lot of you, but

we will just do that in a bit more detail fine. So, this is exactly what I have just said.

(Refer Slide Time: 11:18)



Now, how do you obtain P on given sat no no. So, for a given training instance so, when

you, so you could so, I will. So, for a given training instance you said that your corpus

has  been  divided  into  those  training  windows  right.  So,  it  is  possible  that  engineer

sometimes the word does not and is not the next word, but for this training instance what

is it. So, that is what you have to predict right is that fine.

(Refer Slide Time: 11:48)

And at test time so you are saying that what you are saying is more practical that when I

have typed sat in the whatsapp message, I do not want on as the always the answer. So,

we  get  these  5  options  right  3  to  5  options.  So,  what  could  be  that  you  have  this

probability distribution pick the top 5 from there and show it as options so, is that fine?

So, we are done with this now how do you compute P on given sat, what is the actual

operation happening there, what is the appropriate output function? This is a multi class

classification problem softmax.

This is what softmax looks like. So, the property if suppose on is the i th word in your

vocabulary, then I  am saying that  the probability  of on given sat  is going to be this

quantity; how many of you agree with that? I mean those who agree is fine I am asking

why the others do not agree what is not clear about this? I do not know how to explain

this I mean it is just so plain obvious, what is the softmax function? First of all you will

do this aggregation so, you will do this W word into h that is fine right. So, for you will

compute this vector consisting of W word into h fine what is the dimension of that, what



is  the  dimension  of  that  mod  this  is  k  dimensional  this  is  V cross  k  or  k  cross  V

depending on how you multiply it. So, what is the output going to be V. So, you have V

entries.

These are dash entries the options are normalized unnormalized, unnormalized now what

does softmax do?

Student: Normalization.

Normalization that is exactly what this formula is doing right. You want for the i th word

you see what was the end this product right this gave you a V dimensional vector, you

look at the i th entry there right that is what you are doing here raise it to an exponent

and  divided  by  the  summation  of  all  these  entries.  Come  on  guys  this  is  highly

disappointing I cannot teach softmax, I had in the tenth lecture eleventh lecture of the

course right what is wrong? How many if you get this now just have to ask of it tangle

you.

So, you see this right this is what is happening here. So, you get this V dimensional

vector  and you just  con converting  into  a  probability  distribution  using the  softmax

function. So, now, this value how did he compute this value actually? You computed this

product which is W word into h and then you took the i th entry of that and then this

some transformation on that, the softmax transformation you see that.

(Refer Slide Time: 14:21)



So, now I can say that P on given sat is actually proportional to the dot product between

the j th column of W context and i th column of W word why am I saying that?

So, remember that this was the i th word in your vocabulary and on was the j th word in

your vocabulary. So, can you explain the meaning of this sentence doing? First let us

look at the first part what is h? It is a j th column of W context oh sorry this should be i

this should be j. So, this you already saw that h is the jet column of W context because I

am multiplying a one odd vector with the matrix is that fine and what is the i th column

of W word? So, why what is this product actually equal to if I say W word into h W word

into h that is a vector, and then I am taking the i th entry of that. So, I am saying that is

the same as taking the i th column of W word and multiplying it by h; how many if you

get this is basically in your algebra right.

Now, these 4 different ways of multiplying matrices I am just using one of those right.

So, if I multiply a matrix with a vector and then take the i th entry of that, that is the

same as multiplying the i th column of the matrix with the vector. Just go back and verify

this just take my word for it for now. So, now, what is happening is that it is proportional

to the product between the j th column of W context and the i th column of W word is

that clear now, everyone gets this.

(Refer Slide Time: 15:56)

So, P word equal to I given sat does depends on the i th column of W word.



So,  now what  can  you  say.  So,  earlier  we  saw  that  the  i  th  column  of  W context

corresponds to a particular word now what can you say about the i th column of W

word? It also corresponds to a particular word. So, now, why these 2 correspondences I

already had a correspondence between W context and every word in my vocabulary, now

I am saying that there is also correspondence between W word and every word in my

vocabulary; how many of you first of all are comfortable with the sentence? That, every

column of W word has a correspondence with some word in the vocabulary.

The second sentences every column of W context has a correspondence with some word

in the vocabulary do you all of you agree with both these statements? Okay that is what

we have try to prove so far. So, now, for every word; that means, I have 2 columns

waiting for it, how do I deal with this situation, have you ever dealt with it before? The

same thing happened in SVD also right. SVD also gave you this u sigma which was W

word  and  then  V  which  was  W  context.  So,  you  can  always  learn  2  different

representations for the words one is when the word appears as a context word and the

other is when the word appears as the target would you get that, you see why we have 2

different representations fine.

And as I said hope you see the analogy with SVD right you already saw there that there

were these two representation. Now given all this set up and please do not disappoint me

can you learn these parameters with some tweaks to the code that you have written for

MNIST, can you use the same code to learn these parameters? How many if you say yes.

So, what is the tweaks, what are the tweaks? The input changes instead of the image

input you have this V dimensional input, what else changes? 

Student: Output.

The output changes instead of a 10 dimensional output you have a V dimensional output

all of you are absolutely clear about this and what is the training algorithm? 

Student: (Refer Time: 17:59). 

Back propagation what is the loss function? Cross entropy good.



(Refer Slide Time: 18:05)

So, for some I will  do some more stuff on this  because there is  some in interesting

interpretations of the gradient descent update rule here. So, I will refer to the word sat by

the index c, and the word on by the index w. And you already saw that the appropriate

loss output function is softmax, the appropriate loss function is cross entropy. So, let me

just look at this right. So, w was the index of the output word. So, my cross entropy

formula  would  just  boil  down to  this  everyone  is  fine  with  this?  I  will  just  try  to

maximize the w th entry in my y hat, how many of you are fine with this? Okay and that

is nothing, but the probability of the word given the context.

Now, remember that h is equal to W context into x c, I am going to call that as u c. So,

you see is the dash of the word sat title of the lecture? It is a vectorial representation of

the word sat everyone is fine with that? Because that is exactly what this product is going

to do and now my y hat w is equal to this because I already said it is the product of the c

th column of W context and the w th column of W word fine.



(Refer Slide Time: 19:32)

So, now I have a formula for y hat w what is the training algorithm that you will use?

Gradient descent with back propagation. Now let us consider one such input output pair

and see the update rule for V w.

(Refer Slide Time: 19:44)

So, my loss function is this, this is actually this quantity. Now I can just rewrite it as this

I have just expanded the log. So, the log of a by b is log a minus b now I want this

quantity. Because this is the parameter of the network right v w is one of the columns of

W context or is it W word w word; v w is one of the columns of W word and I want to



learn I want to learn it what are the what are these column entries so; that means, I am

interested in this particular gradient.

So, I will start taking this. So, what is it going to be? So, only u c will remain here, of all

these summation  terms only one of them would remain  and then you can derive de

derivative  right.  So,  this  is  what  it  is  going to  look like  what  is  this  quantity?  The

softmax machinery. So, this is what I get how many of you are comfortable with this?

Okay good.

(Refer Slide Time: 20:42)

So, now my gradient update rule is going to look like; everyone is fine with this I have

derived this  formula and I  have just  substituted  that  here,  and this  negative  and this

negative. So, now let us look at this update rule.



(Refer Slide Time: 20:57)

So, this update rule has a very nice interpretation which allows us to understand, what

does the continuous bag of words model actually learn. Now suppose y hat w tends to 1

what would that mean? Your prediction is very correct right you are almost predicting it

has probability as 1 what would happen to the update in that case? There will be no

updated if it is one there will be no update if it is close to 1 there is going to be very very

minimalistic update; that means, you have already learned the v w well enough.

On the other hand if I am very bad, if y hat w is close to 0 what would happen? Just tell

me the case when y hat w is actually 0 what is the update rule? Have you seen something

similar  ever before? Have you seen something similar before where did you see this

update rule? Perceptron what happened when you did this? W and x came closer to each

other the angle between them actually decreased. So, the same thing is happening here

right.

So, what you are trying to do is, you are trying to make your word representation closer

to the context representation is that clear how many if you get this? It straight away

follows from the update rule right because you are adding a fraction of your context

vector to your word vector and we know that when we add 2 vectors they come close to

each other the cosine between them decreases, that is what we proved in the word to it

lecture in the perceptron lecture right.



(Refer Slide Time: 22:30)

So, you can go back and refer to this slide on lecture 2. Now, so, the training objective is

essentially  ensuring  that  the  cosine  similarity  between  v  w  and  context  word  is

maximized; between the word and the context word is maximized.

(Refer Slide Time: 22:47)

Now, what is the result of this? Now I want you to think go back with a starting example,

where we said that we want to learn representations such that cat and dog are close to

each other, but cat and truck are not close to each other.



I want you to think whatever you see on this slide, the conclusions that you drew from

this slide, how do they help you to relate back to that initial goal. So, now, let us let me

give you the intuition right. So, what happens to the representations of 2 words w and w

prime which tend to appear in the same context c? So, say dog eats cat eats right. So, dog

and cat are 2 words, which appear with the same context eats. So, what will happen to

the  representation  of  dog?  It  will  come  close  to  eats;  what  will  happen  to  the

representation of cat? Come close to eats. Not only that dog will also go close to pet

animal sleeps right and so on and cat will also go close to these. So, transitively what

will happen? Dog is going close to a certain point or certain sets of points; cat is also

coming close to the same set of points.  So,  transitively dog and cat will  come close

teacher you get this intuition.

Anyone sees a problem with this? No. So, known objective and I said that dog comes

close to eats is that what he wanted I mean, why should dog be close to eats; that means,

if I find the nearest neighbors of dog, I will get words like eats, sleeps, barks and so on is

that what I wanted? So, that is exactly what is happening? And based on that I convinced

you that dog and cat will come close to each other, but there is a subtle gap here I want

you to close that gap how many matrices do we have? 2 that is enough hint; we are going

to either take columns of this matrix as the representations or the columns of this matrix

as the representation not mixed.

So, now can you tell me? So, dog here will come close to eats, sleeps, barks, here word

will come close to context word right? Cat here will come close to eat, sleeps, and so on

right. So, transitively dog and cat will come close to here and this is the representation

that you care about not representations across these 2 here ah. So, what I said is that the

training  rule  ensures that  the words representation  comes close to  the context  words

representation that is what we saw with the training update rule.

So; that means, dog will come close to any kind of context word that it appears with. So,

dog I would expect it to appear with context words like eats, pet animals, dog, barks

drinks and so on right. So, dog is coming closer to these words, and I expect cat also to

come up here with these words and of course, I do not expect truck to appear with these

words right. So, then cat will also come close to these set of words, dog will also come

close to these set of words. So, transitively dog and cat will come close to each other



right all of them are coming close to each other, which is fine which was my original

goal.

But my original goal was not that dog and eats should come close to each other, because

eats and dog are neither synonyms when they do not have any semantics I mean they

have a semantic relation, but that is not what I wanted. I wanted similar words to come

close to each other, but now I have the side effect that dog is coming close to eats, but

that is bad was how can I live with that.

So, the I mean the key thing that you should notice is that, you have one matrix of words;

the other matrix is of context words. So, the representation of dog in the word matrix is

coming close to the representation of eats, sleeps etc in the context representation on the

context  matrix.  The representation  of cat  is  also coming close to  these words  in  the

context representation and transitively because of this dog and cat in the word matrix are

coming close to each other and this is the matrix that we care about.

In this matrix dog and eats, dog and sleeps are not close to each other right is that fine

everyone gets this now. So, this is only an intuition and this becomes very tricky when I

will blow this up; what do I mean by blow this up? Right now what am I trying to do

what is the size of n? 2 right I am taking one word and outputting the other word, hence

you get all these neat interpretations that you are moving close to that vector and so on.

The moment I add more words to n these interpretations become more and more hard

right, but this again I mean this is good to understand that this is what happens at least in

the best case. So, this is only an intuition which is reasonable in my opinion, I have not

come across a formal proof, which says that this is what actually happens and that is one

criticism forward to a grade. It works very well, but there is no formal proof which tells

you why exactly it works right.

As opposed to SVD right there we know there is a principle behind it, here that is not

very clear right, but it works very well based on this intuition.  So, everyone gets the

whole set up how we started with a classification problem of predicting the n th word

given the n minus 1 words, which had nothing to do with word representations that is a

simple language modeling problem which has existed forever. We smartly modeled it or

someone smartly  modeled it  using a neural network such that  the,  parameters  of the

neural network end up giving you the word representations. And this network is end to



end trainable using an objective function the training data comes for free, for popular

languages you have like tons of training data the entire Wikipedia entire web whatever

you can scrape, that is why with more and more training data you can learn even better

and better representations. So, for popular languages the representations are really good.

And then we saw an intuitive explanation for why this works because of this movement

of  things  closer  to  each  other  and  the  key  thing  to  notice  there  are  2  different

representation matrices one for the words one for the context. And this is not surprising

the same thing happened for SVD also, u sigma was W word and v was W context right.

So, it is all in the same spirit right.

(Refer Slide Time: 28:38)

Now, in practice instead of window size of 1 it is common to use a window size of d;

either d could be 4 or 7 I have I have even say and seen 11 actually, but not beyond that.

Now let us see what happens if you have 2 and here itself it should become clear that,

now those interpretations are not very neat. So, what I will use suppose I want to take a

context of 2 words, then I have he sat and now I want to predict the next word right.

So, what is my input now? He and sat right. So, I will take the one hot representations of

he and sat, I will just concatenate them sorry I just concatenate them is that fine and my

input now belongs to R raise to 2 V, in general it will belong to R raise to d V and now

what is the next step? Do you see something funny here? I have just created 2 copies of

this I am telling you an inefficient way of doing this, later on it will be a very simple



thing to do a very efficient way of doing this right, but first just to get the matt around I

will just do inefficient way of doing it.

Why have I staged it twice 2 words right. So, now, my h is actually going to be the sum

of all the columns of w which correspond to my input words is that fine? I have to earlier

I had just one word as the input. So, my h was just equal to that column of W; now my h

is going to be equal to the sum of all the columns of w corresponding to the words that I

have and I will tell you why. So, I have taken w contexts comma W context which is just

the W context matrix staged twice back to back. So, this was my W matrix, this is my 2

hot vector because I have 2 inputs now right. So, my vocabulary size is 3. So, the first

one hot vector followed by the next one hot vector and now I am going to repeat W W,

now what is the product of this? Is the sum of the 2 columns that you see highlighted

right and exactly that is what I have written here.

So, if I do it this way then I can just do this very expensive matrix multiplication and to

do a something very trivial which is just taking the sum of 2 columns right. But at least

you get the operation and I will just on this next slide or something I will tell you an

obvious simple way of doing that. So, I just get the sum of the 2 columns. So, that is the

input to my network. If I had k words as input if I had my window size 4 what would it

be? I would have these 4 copies of W context I will have these 4 one hot vectors and it

will just give me the sum of those 4 columns that is going to be the input and the rest of

the story remains  the same right.  Once you have this  edge the  rest  of  it  from there

remains the same and this is the formula for h in general.

In the special case it was just the i th column, in the general case is the sum of all the

columns that are there in your input.



(Refer Slide Time: 31:35)

Now, in practice  of course,  this  is  a  very mate expensive matrix  multiplication,  it  is

stupid to do it that way; what you will do is you will just slice of those columns from W

context right and then just add them up. So, you do not really need to do that stupid mate

matrix multiplication because you know that the matrix multiplication is essentially just

selecting these columns and adding them. So, just select those columns and add them up.

So, you do not do that bad matrix multiplication operation that fine.

(Refer Slide Time: 32:01)



Now, what  happens  during  back  propagation  in  this  case  in  the  generic  case?  The

ordering does not matter is what you have seen yes it does not matter yeah there is some

assumption of the model. So, it is that is why the name of bag of words, you are not

relying on the sequence. So, this comes from NLP that if you rely the sequence you call

it sequence, if you just going to take the words in the sequence, you just call it a bag of

words. Because once you put them in a bag there is no ordering there right that is why

the word name bag of words.

So, and again P on given sat is given by this softmax formula, now tell me during back

propagation and if you give me a right answer to this I really feel happy that you have

understood everything right from the beginning of the course so no pressure. So, which

are the parameters which are going to get updated during back propagation, which are

the 2 large matrices W word and W context? So obviously, the answer is not W word and

W context otherwise I would not have asked you. The answer is some dash of these two

some subset of these two, which subset let us start with W context which is the input do

we are we going to update the entire W context, did it participate the entire W context

participate in the computation, only those columns corresponding to the words. So, only

those parameters will get updated right.

So, how many columns will get updated? D columns right. W word till all the columns of

W word participate in the computation how many of you say yes, how many if you say

no? The others do not care; can you just focus on this circle did all the columns of W

word participate in the computation? You see the summation at the bottom, it is over all

the  columns  of  W word all  of  them participated.  So,  the  parameters  which  will  get

updated are W word and all the columns of the input words and same back propagation

will work again is that fine.

So, remember that and this is I cannot emphasize it enough; whatever I have explained is

only for an intuitive explanation, you will never ever do this matrix multiplication right

and that is why what you are going to do is you are just going to select those columns

add them up and feed them. And the network will take care or rather you will take care

that you update those parameters only and you do not update the entire W context matrix

because anyways there is no gradients flowing to the other components. So, remember

that in the practical implementation of W of word 2 vec do not search for this matrix



multiplication at the input, or if you are writing the code on your own which is highly

unlikely do not do it that way right.

So, if you whatever code that you look at did not have this complex matrix multiplication

typically. They will just pick up the columns and add them and feed them right and I

think the tensor flow way of doing is you have this word embeddings matrix and you can

slice columns from there and so, this is fine. So, everyone understands this so far. Now

what are these problems with this, why is this not as simple in some sense as the MNIST

data  set.  Again  focus  on  the  circle,  this  softmax  computation  is  a  very  expensive

operation right you have a v cross k sized matrix somewhere there, and unlike at the

input here you will have to do this matrix multiplication right.

So,  we  have  a  v  cross  k  matrix  multiplied  by  a  k  cross  1  vector,  and  there  is  no

simplification of this you have to do this multiplication what are the sizes of v that we

saw in practice? 50 k, 100 k and if you had Googled 13 million or something right. So,

this is not feasible we cannot do this expensive matrix multiplication right.

(Refer Slide Time: 35:56)

So, although all of this works very fine we need to think of ways to simplify this softmax

computation, where the denominator requires the summation over all the words in the

vocabulary. So, you have to do that many matrix multiplications.


