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Batch Normalization

Now, we will end with something known as Batch Normalization, which is again almost

a d facto standard at least in convolutional neural networks. So, if you are dealing with

convolutional neural networks you will use something known as batch normalization.
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So, let us see what it is, so this is again something which is some method which allows

us to be less careful about initialization, so let us see why that happens.
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So, to understand the intuition behind this, let us consider a deep neural network and let

us focus on the last two layers h 4 and h 3; Now, typically will use some mini-batch

algorithm for training right, so we will  use mini-batch version of gradient descent or

mini-batch version of Adam or any of these algorithms right.

Now, what would happen if there is a constant change in the distribution of h 3 no just

think about the question that I am trying to ask you. So, as far as these two layers are

concerned h 3 is the input and h 4 is the output it does not matter what has happened so

far  or  in  particular  does  not  matter  what  x  was  whether  it  came  from  a  normal

distribution or whatever distribution right.

At this point my input is h 3 and my output is h 4, now I am training it in mini batches

what if across batches my distribution of h 3 looks very different; what would happen, is

it a good thing or a bad thing? It is a bad thing right. So, if you have training data right

just think of this as I said just focus on this layer, if you have an input which is not

following a fixed distribution is constantly changing during your training then that is

always a bad thing right, because you try to adjust to one distribution and now again the

distribution  is  completely  changing.  So,  that  always  makes  our  training  very  very

difficult right. So, if you have a very fluctu and distribution then a training is going to be

hard ok, so that is the intuition that I want to build.
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So, now this could actually happen, so it would help if the pre activations at every layer

are you need Gaussians because, for the input we made a case that will make the input as

unit Gaussian right.

So, that things are very nice they are all coming all the inputs are coming from the same

distribution, but we now realize that at every layer we have an input right it is not that the

original input the only input even h 3 is an input even h 4 is an input and so on. So, why

not ensure that at every layer your inputs or your h 1, h 2, h 3 also is something, which

looks like a Gaussian distribution which comes from a Gaussian distribution. Why not

ensure that, that is the basic idea behind batch normalization and how do you do that is

the following that you had computed this S ik just as we had done in the derivation

earlier right, so S ik is one of these guys.

Now, if you do this what are you actually doing you just normalizing it right you are

subtracting the mean and dividing by the variance, so that means you are making it zero

mean unit variance and that is the intuition which I was trying to build that y naught at

every layer have this good distribution which is zero mean unit variance. By even if you

are feeding it multiple batches for that batch you will ensure that by this subtraction and

division or the normalization process the data will become unit variance and zero mean

ok. So, now at every batch the data is coming from the same distribution even if it was



originally from a distant different distribution, fine. But how do we compute this mean

and variance?

So, did you understand the question that I am asking I am focusing on this S ik I want to

subtract  the mean of that S ik,  how do I  do that?  So, the name gives it  away batch

normalization it cannot be more explicit than that. So, compute the mean for the current

batch and the variance for the current batch and normalize your inputs or normalize the S

i’s according to that you get this. So, now end up with a situation where all your inputs at

every layer across different mini-batches seem to come from the same distribution is it

fine, the current batch, so you take the average value from the current batch right.

So, then it will become zero mean for that batch and unit variance for that batch and this

you are ensuring for every batch. So, every independently every batch you are ensuring

that it comes from a zero mean unit variance distribution right. So, overall the effect is

that all the batches are coming from the same distribution no. So, at validation time you

will compute the mean and variance from your entire data entire training data once after

the training is done right.

So, now we will computed from a mini-batch and this is ensure that across mini-batches,

now your input always comes from a zero mean unit variance distribution across all the

layers.
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This is what a deep network will look like with batch normalization right, so what will

happen is you passed an input you computed this tan h, then you will have this batch

normalization layer watch is what is the operation that the batch normalization is going

to do this is the operation that it is going to talk ok. Everyone gets that and now it gives

me a unit normalized distribution sorry it gives me a input coming from a zero mean unit

variance distribution and then I pass it to the next layer again at a batch normalization

layer.

So, after every layer you will actually add a batch normalization here, now my question

is, is this legal? What is legal in this course anything that is differentiable right. So, you

have to  make sure that  if  we have added this  operation  it  should be a  differentiable

operation. So, that you can come so now the gradients have to flow all the way here

right, so that means I should be able to compute the gradients with respect to this. So,

now this  is  one of my a i  and I  should be able  to  compute dou a i  with respect to

something or rather the loss though of the loss function with respect to a i by turns out

that the operation, that you have done is actually differentiable.
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You can actually work that out and it is not important I am not going to derive it because,

it is just yet another derivative that you will take, but it is a it should get the intuition

from  here  right  what  you  are  doing  is  this  simple  operation  and  this  just  looks

differentiable right.



So, the operation that you are doing is differentiable, so that is why you can add these

batch normalization layers and you can back propagate through this layer. But now what

is  the catch here it  somehow ties  to the question that  he was trying to ask,  you are

actually enforcing that all your are zero mean and unit variance right. So, this is again

some sort of a constraint that you are enforcing right, what if that is not the best situation

in which the network can learn; what if to distinguish between some classes it was ok. If

the distribution was not same across all the batches they get this, they are enforcing a

certain consider they are enforcing a certain condition on all the layers and all of them

have to be zero mean and unit variance but that may not always be good.
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So, they do something which is counterproductive, let us see what that is, why not let the

network decide what is best for it. So, after the batch normalization layer so this is what a

normalized S ik was, after you have done that you compute a y k and this is not the final

output this is the output at the k th layer this is equal to this. Why do they do this and

remember that gamma and beta are going to be learnable parameters, what are you doing

actually you are again scaling it and shifting it this is the same as adjusting the variance

and the mean right.

So, now what happens if the network learns the following you get back the S ik, so you

had taken S ik and you had normalized it. But now if you allow these gammas and betas



to be there in the network, then the network can decide that maybe at this layer I do not

want this normalization I just want to stick to whatever output I was getting.

So, it could learn the gammas and betas in this way and ensure that you get back the

unnormalized S, how many of you get this fine lot of you do not seem to get this; but I

am pretty sure if you go back and look at it you will get it right. So, what is happening

here is that is why I said it is counterproductive that you first forced it to make at unit

mean and 0 variance and now you added no zero mean and unit variance and now you

added this operation which is again a scaling and shifting operation. So, remember that

when you make the data zero mean and unit variance that is exactly what you do you

shift it, so that it become zero mean and you scale it. So, that it becomes unit variance.

So, you are again introducing parameters which again introduce the same flexibility that

you could learn gamma and beta in such a way that you could get back the original data

which was not normalized ok. So, if the network wants to learn that and if the network

fees that is the right thing to do, then it has the flexibility to learn those parameters and

you can recover Si.

Yeah I think the rationale is that your first making is something which is more standard

right and then from there trying to learn it instead of just trying to let it learn in the way.

Do you get the difference between the two the first bringing it to all of these things to

some standard value, which is between I mean which is the normal distribution and then

from there allowing it to learn wherever it has to learn right that is the idea, but it could

be the case that the other thing also works here.
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So, now what we will do is we will compare the performance with and without batch

normalization on MNIST data using 2 layers ok.
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So, here in this figure what I am going to draw is the validation loss, am I no the training

loss as I keep increasing the number of epochs and here I am showing you the histogram

of the activation  functions  at  layer 1.  So,  I  have trained a deep feed forward neural

network and I am showing you what do the activations look like at layer 1 with and

without  batch  normalization.  So,  remember  that  we  started  with  this  intuition  that



without batch normalization there would be this constant fluctuation and the data would

seem to come from different distribution at every training instance right.

Whereas, with batch normalization you are ensuring at your data comes from zero mean

unit variance distribution right and so that is one thing which I want to see another thing

I want to see is that how does it affect training right. So, that is the animation that I am

going to show you. So, focus on all these 3 things I do not know how you will do it, but

focus on this, focus on this and focus on this with two eyes.
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So, let us see to see what happened right, so this so now look at the focus on the leftmost

figure. So, that does not seem to change much with respect to it is mean and variance

right, but if you look at  the middle figure that is constantly changing it  is mean and

variance right. And you see the effect on the training loss that the first one which was

with batch normalization, that converges faster as compared to the second one right again

an empirical result I am not really proving that this will always happen, this is what

empirically we observed.

So, this was the story that we covered from 1986 to 2006 where back propagation was

already it was already discovered, but was not working well and there was this park in

2006 that showed that we could do some things to make training really work for deep

neural  networks,  but  maybe that  something is  not sacrosanct.  We could try different



things  what  we  tried  at  that  time  was  unsupervised  free  training  which  is  almost

nonexistent now.

But  that  lead  that  led  to  these  thoughts  that  maybe  this  is  because  of  optimization,

generalization, regularization activation functions and so on right. So, there was a lot of

research in these different areas and that led to a lot of developments which was better

optimization  algorithms,  better  regularization,  better  activation  functions,  better

initializations and batch normalization right.

So, these a few concepts that you have seen in the past few lectures one being dropout

and  the  other  being  weight  initialization  using  this  Xavier  initialization  or  he

initialization and this batch normalization right. This is something which is all prevalent

right, so this is something that you will see in all deep neural networks that get trained

definitely in convolutional neural networks and more often than not even in recurrent

neural networks right. So, these are the two most popular types of neural networks. So, in

both of these you will see that these ideas are regularly applied and they always lead to

more stable training or better generalization right.
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So, now this was all which happened till 2016 or 17 what has happened still since then.

So, there is still continuous research in designing better optimization methods, so as I

said after Adam there was this Eve which did not become very popular, but there is still



people looking at better optimization methods and there is something which has been

developed on Adam and came out in December last year.

Now, people  have also started  looking at  data  driven initialization  methods right,  so

instead of having this fixed initialization which is drawn from a unit or just which is

drawn from a normal distribution and then just divided by the square root of n. Why not

think of data driven initialization methods that, so there are some works on that again not

very popular because, most of the shelf things that you will try will not really do any data

driven initialization.

But if you really think that you are stuck at some point then you could look at some of

these works and see how they try to come up with initializations based on the data that

you are dealing with and now after batch normalization there have been some other types

of  normalizations  which  have  been  proposed which  seem to  work  better  than  batch

normalization. But largely the stable configuration which has kind of prevalent is Adam

in terms of optimization Xavier or he initialization in terms of initialization ReLU in

terms of activation functions. What else is there batch normalization in terms of again

regularization plus initialization and dropouts in terms of regularization right.

So, these are roughly the key terms that you will almost see in all the deeply living deep

neural network people that you see right, you will always see when they describe the

hyper parameters, they will say that this is how we initialized is this is the drop out that

we use this is the batch normalization and the training algorithm more often than not is

going to be Adam right.

So, they have seen some very crucial elements of training deep neural networks over the

past 2 to 3 lectures right and now we will build on these and we will assume that this is

what you are going to do. So, now when I talk about neural networks like convolutional

neural  networks  and  so  on  I  not  go  back  and  tell  you  use  Adam  or  use  batch

normalization or assume that you already know these things and you will try to train your

networks using these tricks that we have your trick.

The first couple of lectures have been about tips and tricks for deep neural networks and

from here on in the next lecture will move on to what to a right, because that is what you

need for your assignment. So, in the next lecture we will do a word representations, so



that is essentially seeing an application of feed forward neural networks and from there

on we will move on to convolutional neural network.


