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Adding Noise to the Inputs

We go down the next module, which is adding noise to the inputs right.

(Refer Slide Time: 00:17)

So, we have some kind of a noise process and now can you relate that how that was

related to regularization, that was exactly the motivation in that case that we could have

an over complete auto encoder which is a very complex model, because it has a large

number of parameters.

And to avoid that  we were adding this  noise to the inputs so that  even if  it  tries  to

minimize the training error, it is not actually minimizing the true training error right,

because you have fed some noise to it everyone gets this? right. Now actually we can

show that for a simple input output neural network right; that means, you do not have

any hidden layer you just have a set of inputs and you have the output layer. Then adding

noise to the input or rather adding Gaussian noise to the input, it is equivalent to weight

decay.



So this can also be viewed; so, we will do this part right. So, we will just quickly do a

small derivation, where we show that adding Gaussian noise to the inputs is the same as

doing a l 2 regularization, that is a very neat idea. So, this can also be viewed as data

augmentation right. Exactly what I shown on the previous slide you added 2 you just

corrupted some inputs of it that is the same as adding noise to the data.

So,  the  essentially  augmenting  the  data  right,  you have  some training  data  and  just

augmenting it. So, to get more training data is that fine ok.

(Refer Slide Time: 01:41)

Now, about this  smallest  derivation this  is again just a set of steps, I will  go over it

reasonably  fast.  I  will  give  you the  set  up  and then  it  is  quickly  work  through the

derivation right.

So, what I was trying to say is that if you have a simple input output neural network; that

means, you just have inputs and the output you do not have a hidden layer, right? Then

adding a Gaussian noise to the input units where the noise comes from this distribution;

it is a Gaussian distribution 0 mean. I want to show that doing this is effectiveness the

same as doing l 2 regularization ok.

Now, again see this is the same thing squared again a way vacuum because this is not the

kind of networks that we deal with, but it is good to see what happens at least in these

neat conditions, because we will never have a simple input output network, at least not in



this  course.  We will  have  a  deep  neural  network  always.  So,  but  at  least  she  what

happens in the simple case right. So, what we are doing is from the x i’s we are creating a

noisy x i by just adding some epsilon noise to that. And what is our model going to be? It

is just an aggregation of all the inputs. So, this is what our original model would have

been without the noise fine.

I would have just aggregated all the inputs, I am assuming there is no non-linearity at the

output and I am just taking y i is equal to summation of all my inputs everyone fine with

this side. Or this is too simple for you guys to understand because we have been doing a

lot of deep neural networks. So, suddenly one-layer network I do not know what it is

again gets it right.

And instead of y hat, now I have y tilde because instead of x i I have x i tilde ok, but

what is x i tilde x i plus epsilon i right. So, I can write it as this just fine. So, actually y

tilde is nothing but y hat plus some quantity. What are we interested in? Always this

quantity the expected mean square error ok? I mean expected squared error and why not

y hat?

So, we have added noise to the input. So now, y tilde are the outputs that we are going to

tilde. So, let us see what that quantity is; and again just going to be some simple stuff.

So, I replaced y tilde by this that we just derived on the right hand side, on the left hand

side ok. So, I am going to take these 2 terms together; so, I can write it as this plus this

the whole square fine. And I am going to keep this as it is. What is this quantity? The

original squared error expected squared error right, when I was not adding noise to the

inputs ok. and you see how we got these 2 quantities, this is just a plus b the whole

square is equal to whatever it is equal to right? Now let us look at the last term this is a

square of a sum right.

So, what kind of terms would you have inside? You will have some terms which are

epsilon i squares and you would have some terms which were epsilon i epsilon j right ok.

So,  we will  have some expectations  which are going to  be something into epsilon i

square, and some expectations which are going to be epsilon i, epsilon j. Everyone gets

this? Some terms there; now which of these terms would disappear? 

Student: (Refer Time: 05:09). 



These terms right, why? Because the noises are independent ok. I am notl if I have drawn

a noise for one instance; it does not have any influence on the noise that I am going to

add to the next instance. If I have taken one x I, corrupted it with some noise there is no

bearing on the noise that I am going to use for the next epsilon i right? All these features

are the noise added to the features are independent, right is it ok? Fine.

(Refer Slide Time: 05:38)

So now from these terms only the square terms are going to remain, is that fine? And

similarly this quantity, what can you say about this? We just did something similar, why I

am a saying that this is going to 0? Again I can show that this is the covariance between

this random variable and this random variable. And now are these 2 random variables

dependent? What is epsilon i? The noise that I am adding to the input, does it have any

effect on y hat no, right? Because y hat does not depend on the noise, what is y? True

output does it have anything to do with the noise? No right.

So, that is why these 2 random variables are independent. So, I can again write there the

expectation of their product as a product of expectations, and then the expectation of this

is going to be 0, because epsilon i was drawn from a 0 mean distribution is that fine

everyone gets that the same trickery that we did earlier. So, this is the quantity that we

are left with, you see how I got from here to here. This is an expectation of a sum, which

is equal to a sum of expectations, w i has nothing to do with it is not a random variable.



So, it is just the expectation of sigma i square which is nothing but the variance right. So,

I get this what does this look like? I already told you the answer before starting right, this

looks like l 2 regularization this is the true error, I mean this is the empirical estimate

from the training error. And this is the weight decay term everyone get this? How you see

that this is an equivalent thing? So, at least in this neat set up you get the intuition that

adding noise to the inputs is a same as adding a l 2 regularization term, everyone is fine

with this?


