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Sparse Autoencoders

So, in this module we will talk about Sparse Autoencoders.

(Refer Slide Time: 00:17)

Just some concepts before we jump into the actual way of doing this. So, hidden neuron

with sigmoid activation will have values between 0 to 1 and you say that the neuron is

activated when this output is close to 1 and it is not activated when its output is close to 0

ok. Now, a spare encoder tries to ensure the neuron is inactive most of the times, what is

that mean?

Student: Close.

It is close to 0 for.

Student: Most of the.

Most of the.

Student: (Refer Time: 00:47).



Inputs right. So, I am passing a lot of inputs to it, it will try to ensure that it is close to 0

for most of the inputs. So, in other words what does it trying you ensure? I am looking

for the word average. The average activation of a neuron is close to  0 does that make

sense is that fine ok. 

(Refer Slide Time: 01:06)

So, this is on, what you see on the left hand side, this is how you would compute the

average activation of a given neuron, you have all the m examples you see what the

activation was for each of these and take the average right. 

Now, if the neuron is sparse then the average activation would be close to 0 is that fine,

this is all just  different  ways of saying the same thing. Now, a sparse encoder uses a

sparsity parameter say rho and it is very close to 0 say 0.005. 

And it tries to enforce the constraint that on average the activation of any neuron in the

hidden layer should be equal to rho, which is again close to 0. Now, can you think of a,

this is all fine in plain English right, you understand what we are trying to do. First of all

tell me why does this makes sense? What is it that you are trying to ensure? Over fitting

happens because there is lot of dash.

Student: Parameters.

Parameters slightly abstract it out.



Student: Memorization. 

Lot of?

Student: Memorization.

Memorization ok, lot of freedom right, I mean the weights have a lot of freedom to move

where ever they want to do, whatever they want to do such that they can just drive the

training error to 0. What have we done to that freedom now?

Student: We are restrict. (Refer Time: 02:22).

We are  restricting  them.  So,  any  kind  of  regularization  always  tries  to  restrict  this

freedom that the parameters or the network have in general right, and there are different

ways of restricting this freedom. You see that this is one of those ways right; you are

trying to ensure that on average the neuron should not fire. So, it is clear that this some

kind of regularization, any one has a doubt with that? No. 

Now, the second question is taking slightly more on this right, it is I can just move ahead

and I have convince you that this is regularization. But can you think of bit more and see

what is actually being tried to achieve here, what are we trying to do? How many of you

get that or at least could here that first of all, only the second row ok. So, yeah how many

of you can think about this, like what is it trying to achieve? 

Student: (Refer Time: 03:13).

Right. So, on average neuron is going to be inactive, that means, where ever it is active it

is really going to capture some relevant information, right. So, it is going to be active

whenever it is active it is going to  adhere to certain patterns. So, we are ensuring that

each of these neurons are just a very few patterns and it has discriminative power in that

sense, do you get that? 

So, now if; that means, if I show it a 3, if I show it a 2, if I show it a 1 every time if the

neuron fires, when there is no discriminative power in that. But now, if I ensure that the

neuron fires only a few times it will try to fire for meaning full patterns. So, it will try to

fire for a curve or a curve in the between as you have it in the case of 3 right, you have

this cusp in the between, in the middle. So, it will fire for some kinds of pattern.



So,  that  is  what  the  hope is,  it  is  not  just  like  adding some math  and adding some

regularization, but at least there is some intuition behind that, how many of you get that

intuition? Ok good. And now can tell me a way of putting this, everything English is

fine, intuition is fine, but how do convert this to a mathematically equation? 

You want to ensure that rho hat l is equal to rho, there will of course, be different ways of

doing  this,  the  way  these  guys  do  it  by  adding  this  term  to  the  loss  function.  So,

remember your loss function is always going to be L dash theta plus omega theta right.

Where omega theta does the regularization and L dash theta is your regular loss, which

would be the squared error loss or the cross entropy loss or whatever loss you are dealing

with right. 

So, remember this term is always there, but the reason I do not bring it up so often is

because we have already dealt with it. We know how to compute the gradients, we know

how to do the back propagation and all that. And now since your final loss is just a sum

of these two terms, I know how to deal with this and I know that gradients are additive so

I just need to deal with the second term. That is why I am only focusing on omega theta,

l theta has been dealt with, is that fine ok. 

Now, this is what omega theta is, why does this make sense? When would this take its

minimum value when rho is equal to?

Student: Watt.

Watt, everyone sees that how many of you sees that? Please raise your hands ok, fine let

us plot it and check actually, right.



(Refer Slide Time: 05:23)

(Refer Slide Time: 05:27)

So, this is how that function looks like. So, I have plotted the function which I have

written here for a of course, a single k right and my rho that I have taken is 0.2 and if I

plot that function for different values of rho hat l, it will reach the value 0 only when rho

hat l is equal to point. So, again go back and plot this and check and it is actually clear

from the equations itself that it will be minimized only when rho hat is equal to rho l,

right everyone gets this? Fine.



So; that means, this is a genuine, I mean this is a reasonable thing to do, we would think

of other ways of doing that and I am sure you can, but this is also a reasonable way of

doing this fine ok. 

(Refer Slide Time: 06:08)

So, now our last function is as I said it is going to be a combination of two values, l theta

is a normal squared error loss that we have been dealing with and omega theta is this

sparsity constraint that you have added ok. 

Now,you already how to calculate the first term, what are we interested in now? So, you

see that this pattern will keep repeating right so now, you can do whatever you want your

loss function. You have this generic frame of called the back propagation algorithm and

you know that a last part of that back propagation algorithm is going to remain the same,

right. Only thing you are changing is the output layer or the loss function. 

Just need to compute something there and the rest of it will remain the same how many

of you get this general idea? And also appreciate  it right.  That is why this  is a very

powerful frame right, you can just make minor tweaks at the top and you are rest of the

code has to remain the same. 

So,  you can actually  go back and try out  these regularization  terms in  (Refer  Time:

06:58) assignments right, if you really want to see what happens. So, now, this is what



omega theta is and now what I am going to do? It can be rewritten as this, that is obvious

just expanding out the law of function ok. 

And by chain rule this is what I get, now unfortunately the rest of the slide there is an

error the tsp is note this I can kind of overlooked this ah, but I will just convey the idea,

right.  So,  you would  want  to  do  something  of  this  sort,  everyone  agrees  with  that,

remember what is rho hat? It depends on, sorry rho hat l it depends on.

Student: (Refer Time: 07:36).

 h of l it is the average activation of the lth neuron and this depends on some of the

weights. So, that is why this chain rule makes sense and now how to compute this? There

is an error on this slide  but you have done enough gradients in the class for me to have

confidence that you can do it on your own, everyone is confident that they can work it

out on your own? Ok. 

(Refer Slide Time: 07:58)

So, I will skip this, we will fix these errors there are some summation and other terms

missing here and the second part is actually correct which has been derived on the next

slide.



(Refer Slide Time: 08:05)

But I would not go over this, this is there are the slides again go back and look at it. How

many of you are confident that you can do this on your own? Please raise your hands

yeah because we have done enough of this in class right. 

So, you can, you should be able to it no if you are not able to do it then I am not doing a

good job at teaching you right. So, you should be able to do it now fine and we will fix

these errors; so,  TA just remind me after the class. So, everyone gets the general idea,

you find  a  loss,  you find  a  constraint,  you define  it  with  omega theta,  find  out  the

derivative of that with respect to your parameters and just change your gradient descent

upgrade tool accordingly right, is that fine? Ok. 


