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Denoising Autoencoders

 Right so now, we will do something known as Denoising Autoencoders.

(Refer Slide Time: 00:17)

So, the idea behind the denoising autoencoder is very simple, what you do is you have

your original x i, ok. Now for the minute for a minute just consider the discussion when

your x i's are binary inputs ok. So, each of these red guys can be between can be 0 or 1.

Now  what  I  do  is,  before  feeding  it  this  input  to  my  autoencoder;  the  box  is  the

autoencoder what I do is I do a corruption ok.

So, the corruption is as follows with probability q I will set x ij; that means, one of these

guys to 0, right? And with probability 1 minus q, I will keep it as it is ok. So, with some

probability q, I am actually corrupting the data otherwise I am retaining the data as it is

ok. And then feeding that data to the autoencoder, why would this work? Binary input

case as I said just assume that the inputs are binding. 



We will also see the other case, why would this work? What was our problem earlier?

that was completely able to reconstruct the training data right, but at test time I hide

issues. Now what I have done to the training data? Corrupted it just think for a minute

what will happen; now I want someone to ask me a question, in return oh that is the

corruption that I am choosing or you could flip it is what you are saying. Yeah if it is 0

change it to 1 so that is also fine. That is the question I was expecting, what is the loss

function now; what is the loss function? X hat my i minus x tilde i or x hat i minus x i

which choice makes sense.

Student: First tilde.

First let us the case take the case when I do x tilde i what happens in that case from this

networks perspective it is still learning to memorize the training data right it just this is

what it thinks as the training data, and just trying to learn that transformation right. So, it

is not really helping my case, do you understand that? I just corrupted the training data

that is fine, but from the networks point of view; it still gets away by memorizing this

data, and that is not what I want. So, what should I do? Can anyone tell me the; I mean

can everyone tell me the answers?

Student: Minimize.

Minimize the error between.

Student: An x i.

An x i, how many if you understand; why that should help? All of you gave the answer,

but only few of your raised your hands why so, hard to deal with this inconsistency.



(Refer Slide Time: 03:04)

The cells because I am still going to minimize my original objective function ok; now

can the network get away by copying the input to the output? So, input remember the

input to the network is this and what I am trying to minimize this, if I just copy x tilde i

to the output, will my objective function be minimized; no right? So, it does not have

incentive to copy now. So, what will it have to rely on? Say a reasonable probably 20

percent is the standard right. So, even if I reconstruct I will not get 0 error I will at least

get some 20 percentage ok.

So, let us let me give you an example and then let me know if you can figure out what

happens. This example will contradict something else that we have done before, but just

play along. Suppose my input features were height weight and BMI and we all know that

BMI depends on height and weight I hope all of us know.

Now, can you think what is happening? I am corrupting one of these inputs. And I still

want everything to be reconstructed back. So, what will the network now have to rely

on? It will have a now rely on this relations between these inputs also. So, again if I take

my example of digit 3, I have corrupted some of these pixels right, but I still want to be

able to reconstruct 3. So, it will have to be smart enough to learn that if I have seen this

and I have seen this then it has to be something in between which gives me a 3, do you

get the intuition right?



So now I am making it is job harder. So, that it is robust to changes at test time; that

means, a test time if my digit looked something like this, it should still be able to predict

it  as a 3 or it will still  be able to learn the same representation as 3 do you get the

intuition, right? So, that is what I am trying to do I am trying to somehow bring in the

corruptions that I would expect a test case and trying to make the model more robust.

It can no longer get away by memorizing the training data because I am not feeding it the

correct training data, it has to do something smarter than that, everyone gets this. I will

come back to your question everyone gets this please raise your hands yes, yes this is all

under regularization no this is regularization no so at that case I have already made that

overfitting  can  happen  in  an  over  complete  as  well  as  under  complete  autoencoder,

everyone gets that right? I show that example where it could happen in both the cases.

So, my figure maybe over compete, but it can just happen in any of these is that fine.

(Refer Slide Time: 05:44)

It no longer makes sense for the network to just start copying the input data.

Different  kinds  of  noises  means yeah.  So,  let  me try to  answer that  right.  So,  what

probably you are trying to say is that all my input images were 3 vertically written. I

added some noise and managed it, but now at test time suddenly you show me a 3 of this

kind, like that will not work also. That is what were your question was a different types

mean different values of the noise 20 percent 25 percent and so on.



(Refer Slide Time: 06:16)

So,  we  will  first  see  practical  application  in  which  autoencoders  are  used  and  then

compare it to denoising at autoencoders. So, this the next few slides for those of you may

care is also a small answer to the difference between machine learning and dp ok.

(Refer Slide Time: 06:36)

So,  suppose  you  are  given  this  task,  which  is  handwritten  digit  recognition  I  see

everyone paying attention. Now I should say this before every slide. So, this is the task

handwritten digit recognition you are given some data, where you want to classify the

digits into one of these 10 glasses. The traditional machine learning approach to this is



we just construct a feature vector this is a 28 cross 28 image. So, I guess 28 cross 28

pixels which is 784. I treat this as a feature vector and feed it to any of my machine

learning algorithms say SVM or multi class SVM or logistic regression or any of these

right and do a classification based on them. This is what you would have done in your

machine learning course if I had given you this assignment right ok.

(Refer Slide Time: 07:25)

Now, the autoencoder approach or in general the deep learning approach would be you

take  this  data  which  is  the  original  feature  representation  that  you had.  There  is  no

engineering feature engineering happening here right, ideally I want to have features of

the form that if pixel 25 comma 30 was black and if pixel 30 comma 20 was also black

then probably I am drawing a curve somewhere. So, it could be one of these curvy digits

and not one or any of these 7 or any of these things right. So, you want to do some

feature engineering.

So, typically in machine learning what you do is; you start with these 784 features you

observe a few things and you have these handcrafted features added on top of these right.

So, you will add some more features to the data. Now the deep learning approach is that

you let you also learn the features on their own. So, how did we learn these features? We

took this original input we passed it through the an autoencoder which captured some of

these relevant characteristics.



The  differences  we  do  not  really  know what  these  relevant  characteristics  are;  that

means, you and I cannot read them and make sense of them. I cannot say that this pixel is

actually  capturing  the  interaction,  oh  sorry  this  neuron  is  actually  capturing  the

interaction  between  my  700  pixel  and  710  pixel,  I  cannot  do  that.  I  could  have

handcrafted those features. If I believe that all my data is around the center, I could have

handcrafted some features which say that capture the interactions between those that is

what you do in machine learning.

Here you are trying to learn the features also on their own right, what would happen if I

add one more layer to this autoencoder? I would learn even more complex interactions

between these features. So, this neuron is actually learning interactions between all the

input neurons. I add one more layer here again this neuron will learn all the interactions

between these abstract representations, right? So, I could learn more and more abstract

representations of the input. So, I am not doing feature engineering I am just throwing

data at the network and I am assuming that it will learn better and better representations,

is it fine ok?

Now, I am doing this in the autoencoder setup where actually I am trying to optimize the

objective function of minimizing this loss and of course, the squared of this loss is just

fine. So, first what I will do is; I am not happy with my original 784 dimensions. So, I

train a autoencoder to learn some k dimensions which are good. I know these are good

because they are able to reconstruct the data perfectly to a certain extent right of course,

because you add regularization it may not be perfect, but it captures the essence of the

data, you get that.

So,  I  have  better  dash representations,  now feature  representations  right  my original

feature representation was 784 I have come up with some better representations. Now

what will I do; was my task to learn feature representations, what was it? Classification

right, so what will I do now is I will I have learned this much from the autoencoder.



(Refer Slide Time: 10:18)

I will throw away the last layer I do not care about the last layer, what I care at the last

layer is a classification problem, right? So, I will construct a new neural network, where

the first 2 layers of the network are the same as what I learned from the autoencoder and

on top of that I will add an output layer, and now I will try to train this network, how

many of you get what is happening here? Those of you do not get it can you ask me

some questions let me just try to answer on my own it is like playing chess with yourself.

So, this is my original input 784 dimensions, what I have learned with autoencoders is a

smarter representation of this data ok. Now one simple solution that I have is I have this

100 dimensional data suppose this is the representation. So, for all the training examples

instead of using that 784-dimension data and feeding it to a multi class SVM, what I can

do is; I can first compute this 100 dimensional representation and feed that to a multi

class SVM, is that fine and you see that should work better in practice because I have

reduced the dimensions, I have reduced the dimensions smartly.

And now I can train this network is this fine. All I am saying is instead of a multi class

SVM. I could also have a neural network right;  I could feed that representation to a

neural  network.  So,  what  would  that  neural  network  look  like;  100  what  are  the

parameters here? W belonging to 100 cross 10 how many if get it now ok. So, this is

what I could have done.



So, I have learned a better feature representation and now I am using that representation

to learn my classifier. If  I  do this  in an end to end manner;  that  means,  my feature

representation is also came out of a neural network. And my classifier is also a neural

network then I have a complete end to end solution for this you get this, fine.

(Refer Slide Time: 12:14)

Now, we will see a way of visualizing this and then we will make some observations

from the visualizations. So, first let me tell you what the visualizations is.

(Refer Slide Time: 12:23)



So,  I  am returning  to  the  autoencoder  setup.  So,  I  had  this  input  and  I  had  this  h

dimensional or k dimensional hidden layer. Now I can think of each of these neurons as

something which gets activated for a particular type of input, is that fine; what do I mean

by activated it is output would be?

Student: 1.

Remember this is a logistic neurons that we are talking about or even tans neurons the

output would be 1. So, it is the maximum output that you could gain fine. Now so for

example, h 1 is equal to sigmoid of this when would this fire when where W 1 transpose

x i is very high right when you are in that regime where the sigmoid flattens right, this

regime ok; when it is very high. 

So, I want to be able to maximize W 1 transpose x i, do you get this? I want to be able to

maximize this I want to find my W 1 transpose is fixed now because I have trained the

autoencoder. I have got these weights this is all post mortem, right? I have trained the

autoencoder, I have got these weights. Now I want to find an input which will cause this

particular neuron to fire ok.

So,  what  is  my  max  what  is  my  optimization  problem maximize  just  help  me  out,

maximize W 1 transpose x let me just call it x, and the optimization is with respect to x

right because I want to find the x which maximizes this quantity my training is done, I do

not no longer care about changing Ws my training has been done I am interested in

finding xs which will maximally fire this ok.



(Refer Slide Time: 14:08)

So, and I am going to assume that all my inputs are normalized this just makes some

analysis easier and remember that normalization is always ok, you always do that. So,

this is the optimization problem that I am interested in solving. What is the solution to

this; how many if you can solve this? No I want to find the x i.

Student: (Refer Time: 14:29).

Now,  I  have  trained  the  autoencoder,  now  I  have  known  all  these  the  one  I  am

considering one column of the matrix W 1. I want to see what is the input that I should

give. So, that I am sure that this neuron will get activated and I know that this neuron

will get activated if I maximize this quantity right. 

So, I want to maximize that quantity and find an x such that it will get maximized. I was

just hoping that no one brings in eigenvectors W 1 is a column it is not a matrix just try

to work it out. What is this? This is a dash between W and transpose and x i dot product,

when would the dot product be maximized? When they are both in the same direction

right; that means, you know the direction is going to be x i is equal to and what did I

want the norm to be; how do you get it fine.



(Refer Slide Time: 15:26)

So, the solution is going to be this is fine W 1 by the norm of W 1. So, just remember

that this quantity is going to get maximized when the dot product is maximized the dot

product is maximized when both x i and W 1 transpose are in the same direction right so;

that means, x i should be in the same direction as W 1 and I also wanted this constraint

that x i should be the norm of x i should be 1. So, I am just dividing W 1 by the norm of

W 1 this is clear to everyone how many of you get this.

So, I know now what is the input I should feed to the network so, that one of these

neurons fires. Now what I am going to do is I am going to plot the xis which maximize

each of these neurons I am going to consider some 100 neurons in the hidden layer. And

I am trying to find out the input image which is going to maximize or which is going to

cause each of these neurons to fire, do you get what I am trying to do? Even though you

do not get why I am doing it, but do you get what I am trying to do.

So, what am I going to do is; this is a vector, right? So, I am just going to try to plot this

as an image of the appropriate dimension.



(Refer Slide Time: 16:41)

And this is what I get with a vanilla autoencoder there was no noise this is what I get and

this is for the MNIST digit data set right. So, my data is 2 3 1 and so on digits, this is

what happens when I get 25 percent nice, and this is what happens when I get 50 percent,

what do you understand from these figures? Remember that each of this is the figure

which caused one particular neuron to fire is that clear each of these is a trigger which

caused one neuron to fire. 

One  image  yeah  one  box  corresponds  to  one  column  yeah.  So,  it  is  just  that  the

dimension of the column is again 28 cross 28. So, I am just plotting it as a 28 by 28

image. So, I will just let me just clarify that is I think that is what I said yet. So, what is

the dimension of this? In fact, you just know this right this dimension of this is 28 cross

28, right?

So, I can just take that vector and again plotted as a 28 cross 28 image. So, what I mean

is this is 784 right. So, x i is a 784 dimensional vector I am just taking it as a 28 cross 28

image and plotting it because my inputs were actually images. So, I am just plotting

those images fine. So, at least you see, what I am doing here and what I am telling you is

that  each of these boxes that you see corresponds to one of these images.  So, I  had

images x 1 x 2 up to x k such that; each of these caused the k th neuron to fire. Now what

are you seeing here I mean what how do you make sense of what you are seeing and



remember  in  the  mnist  sorry.  So,  let  us  try  to  forget  all  this  neural  network  and

everything and let us just try to see yes the weights would be.

Student: More distinct.

No why do you say the weights are more distinct yeah, but on average you would be still

reducing it right ok. So, let me just explain what is happening then we can come back to

this. So now, we have this set up we had some input. We had a certain number of neurons

here and then we had the output ok, this is what our neural network was trying to do.

Student: (Refer Time: 18:53).

Now, let us take this task of recognizing a digit. Now how do I actually recognize a digit

if I want to distinguish between a 9 and a 3, I would try to see if there is a curve in these

positions and it is not there in this, hence this is a 3 this is a 9 that is something roughly

like that right. So, in other words I am now I have given delegated so; that means, what I

do is I think of 3, as a combination of you get the idea as a combination of these images

with these strokes right. So, this is actually this stroke this is actually this stroke, this is

roughly this stroke and so on you get the idea.

So, I think of 3 as a combination of many of these strokes, right? Now what I would like

is if this guy could detect one of these strokes, right? The other guy could detect one of

these other strokes right. Now you see that some of these strokes are shared across digits

for example, all these strokes here look at the digit 9 these strokes gives common to 3

and 9 both right, but some strokes would be missing for 3 some strokes would be missing

for 9 and you would have extra strokes in both of these. So now, each of these neurons

could actually recognize these strokes; then a combination of the information that each of

these neurons is capturing could help me decide whether it is a 3 or a 9, how many of

you get that intuition?

Student: (Refer Time: 20:23).

So, I would like each of these neurons to detect certain strokes ok; that means, I would

like this neuron the first neuron to fire for an input like this, where there is a stroke at the

bottom. I would like some other neuron to fire for a different input whether there is

stroke here. Now can you relate this to what you are seeing in the picture, in the second



and third picture; this neuron is firing for inputs which would have a stroke at the corner

right  and you see different  neurons are  firing 4 different  strokes.  So,  each neuron is

trying to capture something relevant. And together now I could combine them to get the

final output, how many of you see this; how many of you do not get this?

So, to ask questions otherwise I cannot really help it, how many of you want me to go

over this again? Which part yeah so let me just repeat what each of these boxes is right.

So,  each of these boxes  is  the image which causes the kth neuron to  fire  right.  So,

remember I decide I came up with this that this is the input which causes the second

neuron to fire, what was the dimension of this input? 28 cross 28. 

So, I am just plotting that 28 cross 28 input right, and I am realizing that this input seems

to be something which has a dark spot here right? So now, just related to the analogy that

I am trying to give at the bottom that this neuron fires for inputs which have a stroke

here, that is that is capturing and there are other neurons which are trying to fire for other

strokes.

And I  would want  these  neurons  to  capture  different  strokes.  So,  that  together  they

captured all the information in the image and helped me decide that a combination of

these strokes gives me a 9 a combination of these other strokes gives me a 3 is that clear

now you also.

Student: Yes, sir.

So, yeah. So now, the thing is this right the again the same thing you could learn to

reconstruct the output, but you may not capture the important characteristics in the input,

right? So now, as you keep making it is job harder it  has to rely on capturing these

important characteristics in the input, right? And actually if you look at the difference

between the second figure and the third figure right let us look at the same guy here.

So, you see that this is actually thicker and wider, the stroke that you see here is thicker

and wider. So now, it is actually relying on more neighborhood information to fire it is

not firing just for this stroke, but it is fighting for a larger stroke it is also requires more

neighborhood information because you are corrupting the pitch.



So, it has to rely on information from the other guys, the same example that I gave for

height weight and body mass index right the same thing holds here. I have corrupted a lot

of inputs. So now, it will fire only if it gets a lot of information from the neighboring

inputs also is that fine. And I now coming back to your question, yeah I do realize now

what you are saying that the weights are actually becoming larger yeah, it makes it more

robust, but again.

So, regularization just does not always mean that your weights have to be small right that

is one way of constraining or regularizing, but this is another way of regularizing where

you are making it  more robust,  but it  does not necessarily  need to lead to the same

solution where your smaller weights does that make sense, it is; for most of you any

please raise your hands if this group?

(Refer Slide Time: 23:59)

 And this is same thing that I have written here ok.



(Refer Slide Time: 24:02)

Now, we saw one form of this function ok, which was just flip the input if the output is

just corrupt the input right, you could also add a Gaussian noise. So, you could take the

input add a Gaussian noise to it with 0 mean and then again try to reconstruct the original

input back is that fine. So, you could just use different noise functions to do this. So, we

will now see such a denoising autoencoder where we have actually added a Gaussian

noise, instead of the 0 1 noise or the corruption that we were doing, right?

(Refer Slide Time: 24:39)



Yeah  so  the  purpose  of  this  particular  example  that  I  am  giving  is  to  compare  an

autoencoder which is regularized by adding this Gaussian noise, with an autoencoder

which  is  regularize  by  using  weight  decaying  right  the  l  2  regularization.  So,  l  2

regularization is also known as weight decaying because you kind of decay the weights

right you force the weights to be small. 

So, what they showed is that with Denoising Autoencoder using a Gaussian noise, you

actually  learn something known as edge detectors  right.  So,  you see all  of these are

trying to detect edge, again the same thing is happening I am plotting the images which

will maximally cause a particular neuron to fire and it looks like all these neurons fire for

different edge patterns in your original data.

So now they are capturing all the edges in the data, and the combination of these edges

should tell you what your final class is. And this seems to work much better than the

weight decay filter which is not really capturing any regular pattern ok. So, this is just an

empirical evidence that an autoencoder with a Gaussian noise seems to do better than

autoencoder with the l 2 regularization ok. 

https://www.youtube.com/watch?v=CY9WuPUHesE

