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Link between PCA and Auto encoders

So, we will move to the next module where I would like to show you a  Link between

PCA and Auto encoders.

(Refer Slide Time: 00:20)

So, this is what I am trying to show you that under certain conditions, PCA is or rather an

auto encoder is equivalent to a PCA. And the conditions are; if you use a linear encoder,

if you use a linear decoder, if you use  a squared error loss function and if you normalize

the inputs to this. So, for the time being, just ignore the last bullet. Let us look at the

other 3 bullets using squared error loss functions. 

So, remember I gave you different choices right? You could have used the cross entropy

or  the  squared  error  loss.  But  I  am going to  prove  this  equivalence  only  under  the

condition when we have the squared error loss. What do I mean  the u encoder is a linear

encoder? g is a linear function. We are not using a sigmoid or any logistic or anything

like that and linear decoder. Again the same thing; we are not using the sigmoid or soft



max or anything at the output;  it is a linear function. Under these conditions, I will show

that or I will try to show you that PCAs equal auto encoders equal to PCA. 

What does this mean actually? Ok, now what do I mean by it is equivalent? What do I

have to show you actually? How many of you understand what I am trying to prove?

How many of you can mathematically define it? Ok, so, we will try to make this clear

over the next 15 minutes.

(Refer Slide Time: 01:43)

First, let us look at the last condition right; which I ignored., I always anticipate all this

right. So, I have full faith in you guys ok. What is this mean? Now, what I am doing?

Centering the data and I  am also doing 1 by square root of m; why?  Mean, as the

standard deviation [FL] fine.

So, the operation in the bracket ensures that your data now has become 0 centered right.

It  is  a 0 mean. And now let  X dash be this matrix  this  one right such that,  all  it  is

elements are 0, mean is this still a flicker again alright.

So, let I am calling X dash as this matrix ok. So, this matrix, where I also have 1 by

square root of m, I can write it as everyone gets this is simple. Now do you see where

this is headed? What would X transpose X be? Covariance matrix; So, I needed that 1 by

m right at the out.



So, now this is the co-variance matrix. So, if I do this normalization to the original data

and then if I take let x dash be that quantity and then if I take x transpose x then I will get

the co variance matrix everyone gets this that I did this to get the co variance matrix. So,

that I mean I did this. So, that when I take x transpose x I get the co variance matrix after

this normalization only it will be the covariance matrix.

(Refer Slide Time: 03:04)

So, first we will show that, if we use the linear encoder, decoder and a squared error loss

function, then the optimal solution to the following objective function. What does this

objective function?

Student: Squared error.

Squared error loss is obtained when we use a linear encoder. Do you understand the

implication of this? What does being stated here? Ok, So, I have fixed the decoder. I

have said that the decoder is going to be a decoder. I have fixed the encoder or I have

fixed the loss function. This is going to be a squared error loss function. This is given to

me. Now under these conditions, I am trying to minimize this loss function ok.

Then I am telling you that the only solution to this is that the function dash should be a

linear function which function? The function g should be a linear function you cannot

choose sigmoid or logistic or anything else right? The optimal solution will occur when g

is a linear function everyone gets what is being stated here ok?



(Refer Slide Time: 04:02)

So, this summation that I have written right or. In fact, this the entire objective that I

have written is actually equivalent to this objective. Is this fine with everyone? Even

though I have not defined what H is just fine with everyone. So, we had this X it was X 1

to X m ok. I had picked one of these Xs. What is the dimension of this?

Student: 1 cross.

1 cross m and then I had multiplied it by a weight matrix W. Not W star; remember that

what do the dimension of W.

Student: n n.

N cross k and what will I get as the output.

Student: (Refer Time: 04:58).

I got an H which was 1 cross k, what did I do this?

Student: Multiply it by

Multiply it by.

Student: W star.

W star which was k cross m and what did I get as the output?



Student: x hat.

x hat which was 1 cross n right. So, what I am telling you is that, I could do this together

for all these X i's. I could do this operation at one go and I can call this as X matrix and

what will I get here? h 1 to h 2 to h m. And I can call it as the H matrix and I multiply it

by W star and what do I get? X cap ok. It that fine ok, but without defining these things

also it was fine. So, it does not matter ok.

(Refer Slide Time: 05:51)

So, now how many of you get that this quantity is the same as this quantity? Oh you get

it? Ok fine, I thought you are answering why now what you it just obvious now how do I

explain this was the Frobenius norm of a matrix? Some of the squares of the elements.

Now, what is the matrix X? It is the X 1 1 up to X 1 n and X m 1 up to X m n and all

elements in between right? What is the matrix H W star; we just did that the same thing

expect that it is X hat.

Student: (Refer Time: 06:04).

I take the difference between these 2 what do I get?  Every element of that matrix is

equal to this quantity that I have underlined right. So, I get a new matrix such that every

element of that matrix is equal to this quantity. Is that fine? Now, I am taking the square

of every element of that matrix and adding them up what is that equal to?



Student: (Refer Time: 06:15).

A Frobenius norm how many of you get that  now? Almost everyone, ok. So, this  is

equivalent to the Frobenius norm ok. Now, where have you seen the Frobenius norm

before what did we show in the SVD theorem?

Let us try to connect things right if you do not learn how to connect things it is going to

be very difficult. What is this X hat? It is a dash of X.

Student: Reconstruction.

Reconstruction it is a dash of X approximation. What is the solution to this optimization

problem? What is the solution to this optimization problem? I shall started off with the

answer that we saw this in the SVD theorem and then I asked you a question what 30

hours 32 hours; not even 32 hours are passed since we did this. Come on, what is the

solution to this? No, no that is fine.

But what is the solution X hat is equal to  what? The best approximation to X is given by

what? Is it  fine yeah, yeah. So, some k yeah, but it is going to come from the SVD

theorem, right is that fine? It depends on what rank approximation you want, but it the

best approximation to this is going to be given by the SVD of X, is it ok? Everyone gets

that yes forgot about it, but now do you remember it all those extra lectures 8’O clock in

the morning.

(Refer Slide Time: 08:26)



So,  that  means,  H W star  should be equivalent  to  this  that  we know from the SVD

theorem that, the optimal solution is going to be given by SVD. So, if I just compare

terms ok, then I could write that one solution is this that H. H is equal to U into sigma

and W star is equal to V transpose. I could have chosen the other solution also where H is

equal to V or sorry U and W star is equal to sigma  V, ok. But I will work with this

particular solution. You see, this I am just matching variables right? It is said that, A B is

equal to C D E. So, I am saying that A is equal to C D and B is equal to E, is that fine?

Ok.

Now, we will work with this. So, and we will try to show something; so, let us see what

we are trying to show.

(Refer Slide Time: 09:14)

Now, first thing that we will show is that H is actually a linear encoding. So, what does

this mean? You first always understand what has been tried to prove right? I am saying

that, I am going to show that H is a linear encoding of X, then what is it that I am trying

to show? 

I am trying to show that H is equal to a linear encoding of X when H is of the form W X

and not something of the form W sigmoid of W X or something like that or any other

non-linearity for that matter. Is the statement clear? That is what I am trying to show.

When I say H is a linear encoding, I mean that H is obtained by a linear transformation

of X.



(Refer Slide Time: 09:52)

Now, H as we defined on the previous slide is equal to this. Now, if I already had an X

here, then I was done, but I do not have any X there yet. So, I want to a get to a form

where I can show that H is equal to W in to X. So, I will just do some simple trickery and

arrive try to do arrive at that form.

(Refer Slide Time: 10:13)

So, the first thing I am going to do is pre multiplying pre multiply by this quantity and

this is fair because this is just equal to I what next I will write these 3 xs as u sigma v

transpose and I will leave one x as it is that ok.



Now, just can you just try to see what the next step would be this V transpose V will

disappear because it is equal to i. Now what happened here? I actually just expanded this

inverse. So, I will think of this as A B C. So, A B C inverse is equal to C inverse B

inverse A inverse. 

So, I have just applied that it just that my inverse is a very straight forward matrices here

they are just the transform of the original matrices. Everyone gets this step. Well you can

stare at for a for a few more seconds if you want. How many of you do not get this? How

many of you get this? Ok, now what is next this U transpose? U disappears.

Student: (Refer Time: 10:59).

This also disappears.

Student: (Refer Time: 11:03).

No.

Student: (Refer Time: 11:06).

It is this U is only. The first k columns of U right, this is not the entire U. This is just the

first k columns of U, fine. Now what next A into B inverse is?

Student: B inverse.

B inverse A inverse what will happen? Now that quantity will disappear. So, what do you

have left now ok. So, this is something ok. So, now, let us look at this is let us say this is

n cross n and this is n cross k what is the output going to be.

Student: n cross k.

N cross k and what is the output going to look like is the first k columns of.

Student: Identity.

The identity matrix everyone gets that if you do not you can just work it out with the

small  matrix  after  going  home  and  you  will  get  it  right  if;  so  if  I  done  the  full

multiplication,  I would have got the identity matrix.  But I am just talking the first k



columns. So, I will get the first k columns of the identity matrix. Do not fed too much. If

you are not getting this, you can just work it out on paper and you will get it.

So, I get the first k columns of the identity matrix and this inverse disappears this sigma

transpose into sigma transpose (Refer Time: 12:19) now what next what is this product

going to be the first k elements of.

Student: Sigma inverse.

Sigma inverse and that is going to get multiplied by sigma k cross k. So, that will give

me the first k elements of.

Student: Identity.

Matrix  there  is  some very simple  matrix  operations  where you are  just  taking some

columns right. So, if you do not understand this right. Now do not worry. You can work

it  out.  Everyone  is  confident,  they  can  do  this,  please  raise  your  hands  if  you  are

confident. And now, what do I finally, get this multiplication will give me.

Student: The first k columns.

The first k columns of V ok; so, have we come to the desired form what I have shown.

Now H is a dash of X or linear transformation of X; that means, my optimal encoder was

a linear encoder and what was the optimal weight matrix w the first k columns of V yeah

I  someone  pointed  it  last  time  also  I  could  not.  I  ignored  it.  I  will  just  pretend  I

understood.

But I get it I know that there is a simpler solution. I do not know why do it this way, but

there is a simpler solution. I just like making life miserable for you guys, but, but the

point is, you can figure it out, that it is a it is a linear transformation of X now.



(Refer Slide Time: 14:00)

We have that the encoder is equal to the first k columns of V ok. What is V eigenvectors

of X transpose X ok?

Student: A.

What is the other thing that you know about the eigenvectors of X transpose X they are

the solution for the.

Student: Eigen.

If you have given an matrix X then the PCA is the eigenvectors of the co variance matrix

was the co variance matrix X transpose X what is are it is eigenvectors capital V right.

So, what have we arrived at are we done with the proof. Yes, how many of you think that

done with the proof? How many of you think that we are done now?

So, it is done right. So, we have proved what we wanted to prove right. So, what did we

want to prove that you are doing auto encoders. You are trying to train an auto encoders

and you are loss function is the squared error loss function. We saw a neat way of writing

that squared error loss function as a matrix operation where X minus capital H into W.

And then, we saw that these squared error loss function is nothing, but the Frobenius

norm of this and we knew that the minima of this objective function the Frobenius norm

of X minus H W would occur when S W is equal to SVD of X right? We started from



there and showed that H is actually a linear transformation of X and what was that linear

transformation which matrix was used for the linear transformation V V. What is V? It is

the eigenvectors of.

Student: X transpose.

X transpose X. So, what is happened in effect is that if I was trying to train my auto

encoder with this objective function, the weights in my initial layer W would actually

converge  to  v  which  are  the  eigenvectors  of  X  transpose  X;  that  means,  the

transformation that I have learnt this transformation which I have learnt is the same as a

transformation that I have had learned using PCA. Because PCA would also have given

me V into X where V was the eigenvectors of the co variance matrix and we just arrived

at the same solution everyone gets it. Now we are done with the proof.

(Refer Slide Time: 16:12)

So, what we have proved is, under these specific conditions that the encoder of a linear

auto encoder is linear auto encoder is equal to PCA if we use a linear decoder. If we use a

squared error loss function and if we normalize the inputs to this and you understand

why each of these steps was important why was the last step important.

Student: (Refer  Time: 16:32).

Only  then,  we  would  have  got  the  co  variance  matrix  why  was  a  step  before  that

important because, only if it was the squared error loss we would have got that Frobenius



norm objective function right. And why was the linear decoder important again the same

thing? Because X minus H W we wanted it to be linear right is it fine. 

So, you see why all these assumptions were important and under these conditions, we

have proved that auto encoders E equivalent to PCA. How many of you are completely

lost at this point? How many of you have followed 80 percent of what we have done?

Ok.


