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 Welcome to lecture 7 of the course on Deep Learning CS 7015. In this lecture we are

going to talk about auto encoders and we will focus on their relation with PCA. Then talk

about regularization in auto encoders, wherein we will look at denoising auto encoders,

sparse auto encoders and contractive auto encoders. So, let us begin with the introduction

to auto encoders what they are.

(Refer Slide Time: 00:36)

So, this is what a typical auto encoder looks like. And as you can see this is very much

like a feed forward neural network you have an input which is x i. So, you are given

some training data you are given some ie samples x i to x m. So, this is your training

matrix x which we have seen in the previous lectures. So, this is one of those training

inputs x i, and then you have a hidden layer and then an output layer. So, let us look at

what is the configuration of the hidden layer and what does the output layer actually try

to do.



(Refer Slide Time: 01:08)

So, it is a very special type of a feed forward neural network. What it does is it encodes

with input x i to a hidden representation h ok, and it uses an encoded function to do this.

So, this is what the encoded function does. It first does a linear transformation.

So, W is a matrix and x i is a vector and you again have the bias b as a vector right. So,

let us look at these dimensions right, so let us try to fix some dimensions. So, suppose x i

belongs to R n that is what we have been considering throughout the course. So, far and

let us say h belongs to R d.

So, it is a d dimensional representation. So in that case what would W be yeah. So, W

would be R n cross another d cross n right. So, it will multiply with the n cross 1 vector

which is x i and give you a t cross 1 output right. And similarly the b would also be d

cross 1, and then on top of that you have this non linearity g, which will be operating at

element wise just as we had seen earlier. So, it could be any of the sigmoid functions the

logistic or tannish and so on.

So, the end result is you have taken an input x i and encoded into a hidden represent h by

using a linear transformation first, and then a non-linear transformation right. So, I refer

to W x plus b as a linear transformation, because it is a matrix multiplication. Now once

you have constructed this hidden representation.



(Refer Slide Time: 02:41)

 the job of the decoder or the latter half of the feed forward neural network which is this

half is to take this encoded representation. And then try to reconstruct x again from it.

So, again let us first look at the equation. So this is the equation for the decoder, where

again you first take the hidden representation do a linear transformation and then you

again have some function on non-linearity on top of it right. So, we will see what this

function can be so we will refer to it as f for, now we will not say whether this is sigmoid

or linear or what kind of a function it is, we will come back to it later on.

So, now let us again look at these dimensions. So what is x i x i is again R n and your h

was R d. So, you have to go from a d dimensional input to an n dimensional output. So,

again your W star is going it to be R d cross sorry R n cross d. So, it will multiply with a

d cross 1 vector and give you an n cross 1 output right. And that will pass through some

function and it will give you x i hat which is a reconstruction of x i.

So, why are we trying to do this right we took an input x i, we computed it is hidden

representation by doing some non-linear and linear transformation and then again we are

trying to reconstruct x i hat. So, why are we trying to do this? So reason we are doing

this is that we want to learn,  what are the most important aspects or most important

characteristics of the input data x i right. So, if you compute a hidden representation H,

which is presumably smaller than your original input data.



And from that hidden representation if you are able to reconstruct x i right. Then that

would  mean  that  this  hidden  representation  captures  everything  that  is  required  or

everything that is yeah everything that is required to reconstruct x i from x i from the

original input right.

(Refer Slide Time: 04:37)

So, the model will be trained to minimize the difference between x i and x i hat. So, you

want  to  make  sure  that  after  passing  through  this  bottleneck  which  is  the  hidden

representation you are able to reconstruct x i, and the reconstructed output is very close

to the original input right.

So,  can  you  see  an  analogy  with  PCA,  where  you  are  trying  to  find  this  hidden

representation or this most important elements of the original input x i. So, there we had

used this linear transformation where we are taking the original input x. And transformed

it to a new basis and we had used that basis for representing the original input right. So,

something  similar  is  happening  here,  we  are  using  this  hidden  representation  h  to

represent our original input.
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Now, let us consider a few cases the first cases when the dimension of h is less than the

dimension  of  x  i.  In  this  case  as  I  was  trying  to  say  earlier  if  we  are  still  able  to

reconstruct x i hat perfectly from h. Then what does it say about h it tells us that h is a

loss free encoding of x i. It captures all the important characteristics of x i write just

repeating what I had said on the previous slide. And now you can see an analogy with

PCA because h has all the important characteristics required from the original input data.

So, it has probably got rid of all the noise or all the low variance dimensions or the

correlated dimensions and so on. And this is just the compact representation, which is as

good  as  the  original  representation  and  from there  you  can  reconstruct  the  original

representation.  And  such  an  auto  encoder  where  the  dimension  of  the  hidden

representation is less than the dimension of your original input is known as an under

complete auto encoder.
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Now, let us look at the other case where the dimension of the hidden representation is

greater than the dimensional of the original input, such an auto encoder is I will tell you

what it is called.  So, we will we are looking at the case where the dimension of the

hidden representation is greater than the dimension of the original input right.

So, now in such a case the auto encoder could learn a very trivial encoding by simply

copying x i into h and then copying h into x i right, so think of this from a compression

point of view right. So, now, suppose you have 10 bits initially right, and then you want

to somehow compress it and store it only in 4 bits.

And now this 4 bits  should be such that  it  captures everything that was there in the

original 10 bits because you would want to reconstruct the original input again right. So,

this is what we do typically when we compress any of our files right we have a larger file

we compress into a smaller information while making sure that everything important is

there. So, that whenever I want to recover it, I can just recover it from there right 

So, this is definitely a hard task, but now what I am doing in this auto encoder is that I

had 10 bits, I am actually giving it more bits now because the dimension of h is greater

than the dimension of the input. And then from these 16 bits, I want to reconstruct the 10

bits now this is a very trivial task right because all I could do is copy these 10 bits into

the first  10 bits  here leave  the remaining 6 blank.  And then from those 10 bits  just



reconstruct the input that is very, very trivial if you give me more storage and what I

originally needed, then definitely I can easily reconstructed right.

(Refer Slide Time: 07:58)

So, this looks very trivial and this is what it could do right just copy the input to the first

the n bits.

(Refer Slide Time: 08:12)

So, this was n and this was d and we are looking at the case where d is greater than n. So,

it will just copy the input to the first n bits and then just take it back to the output just as i



said in the case of you have 10 bits 16 bits and then again 10 bits it is very trivial to do

this.

So, such an identity encoding is useless because you are just not running any important

characteristics of the data, your h is almost the same as x i it also has all the useless

information that x i had. In fact, it has slightly more because it has these blank units also,

but this is not really useful right why would you want to actually learn such a hidden

representation right. So, it is not clear why would you want to do that so we will take a

look at it we will come back to why this is important.

So, such an auto encoder is known as an over complete auto encoder because it has the

hidden representation has morenumber of neurons as compared to the original input, now

let us look at a case where this would actually be important right. So, this is a very rough

intuition for why you would want an over complete auto encoder right.

So, let us consider the case where you have as input 1 of the features that you are looking

as BMI. So, suppose you are trying to find out whether the person is likely to get a

certain disease or not right.  So, whether he would have a heart  attack or whether he

would have a diabetes, would have diabetes and so on. And you are looking at various

parameters or various medical parameters of that person and one of them could be height

one of them could be weight and one of them could be BMI.

Now, for whatever reason you have not computed the height and weight and you have

only looked at the BMI. So, now, what has happened in your input and all of you know

that BMI is actually body mass index which is a function of the height and the weight.

So, now, what has happened is that in your original input there was already this compact

the your feature space is already compact, because you would actually look at you should

have actually looked at both the features height and weight, but for some reason you

have only computed BMI and you could think of various some other correlated features,

which are functions of many other features, but you do not look at all those features and

just this final function of those features right.

So, now in that case if suppose your prediction is that this person has or has a high

likelihood of being of high likelihood of having diabetes at some point in his life. Then



you would want to know whether it was the height, or whether it was the weight which

was responsible for this.

So, in your original input your features are actually entangled and you would like to

disentangle them right. So, you would want to go from this smaller feature space to a

larger feature space where some of these entangled features get is disentangled. So, in

those cases we reach an over complete auto encoder; however, the problem still remains

that  there  is  no  reason  why  the  machine  should  actually  learn  to  disentangle  these

features it could still just simply copy the BMI here and then copy it back here right.

So, that is why when you are dealing with over complete auto encoders you will have to

do something special to prevent this kind of identity encoding. So, as you just take the

input and copy it to the hidden layer, and then copy it back to the output. So, we will

look at what kind of special treatment you need to do to prevent these kind of identity

representations.

(Refer Slide Time: 11:24)

Here is the road ahead. So, first we will talk about the choice of f x i g x i right. So, we

did not say anything about what these functions f and g have to be. So, we will talk about

those and then we will talk about the loss function. So, I have just told you so far that we

will train this model in a way that x is very close to x i hat right. And I have argued that

if  we are able to actually  achieve that that  x i  hat is  the same as x i in which case



presumably, presumably the loss would be 0. That means, our hidden representation has

captured all the important characteristics of the original data.

Same as  in  the  analogy  of  10  bits  to  4  bits  to  again  10  bits  right.  If  I  am able  to

reconstruct this without any error that means, loss is 0 then these 4 bits or the hidden

representation  of  my  original  x  was  actually  able  to  capture  everything  that  was

important in x. So, that it can reconstruct x again as x hat without losing any information

right.  So,  that  is  the  loss  function  that  we  would  want  now  what  is  the  actual

mathematical formulation for this loss function that is what we will see next.

(Refer Slide Time: 12:35)

So, first let us start with the choice of f, f and g. So, we will consider 2 case 2 cases 1

case when your inputs are binary and the second case when your inputs are actually real

numbers right. So, the first we will look at the binary case. So, now, just some notation

clarification. So, remember our original data was this matrix x which was m cross n. That

means, you had x 1 x 2 up to x m and each of these was R n right.

So, now when I am referring to the entire row or entire data instance I will use bold x i,

as I have circled here. And I want to refer to 1 of the elements of this guy, then I will use

this notation x i j same as what I have written here. So, what I am saying is that each of

these x i js actually is a binary variable.



(Refer Slide Time: 13:25)

Now, which of the following functions would be most appropriate for the decoder? So,

remember was the input was binary. That means, your output also has to be binary you

do not want to produce numbers arbitrarily large belonging to any or want do not want to

produce any real number you want to produce numbers which lie between 0 to 1. So, in

such a  case  what  would be an  appropriate  loss  function  or  sorry what  would be an

appropriate function for the decoder. So, remember I am asking you what would f be.

So, I am giving you 3 choices it should be tan h or just a linear decoder or a logistic

function. Which of these would be most appropriate logistic why would that be because

it will make sure that your outputs are between 0 to 1, tan h would give you outputs

between minus 1 to 1. But you do not want that because your inputs were between 0 to 1.

So, when you are reconstructing; obviously, you want outputs between 0 to 1, you do not

1 minus 1 to 1. And linear of course, can give you any real number which is not what you

want right.

So, if you produce any arbitrary real number like hundred and so on, your loss is going to

be very high because your inputs were just 0 to 1 and you are producing these arbitrary

real numbers which are very different from what your input was. So, in this case the

logistic function makes the most appropriate choice. And g is typically that means, the

encoded function is typically again chosen as a sigmoid function. So, it could either be



the logistic function or the tan h function right. So, the there is you could choose any of

these as the encoder function fine.

(Refer Slide Time: 15:01)

Now, let us consider the other case where your inputs are real valued. That means, when

you  reconstruct  something  you  should  again  produce  real  values.  That  means,  your

function f should take whatever is the input given to it and map it to some real numbers

right. So, that is what we want from this function f earlier in the binary case we wanted it

to map it to binary numbers right. So, that is the difference that we have now.

So, in this  case which of the following would be appropriate?  The second one right

because tan h does not make sense because it will just produce minus 1 to 1, but you

want to produce any possible real number because some of these are actually higher than

1 greater than 1. Linear would be fine because it will produce any real number logistic is

again not fine because it will produce numbers between 0 to 1.
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So, the logistic and tan h as I said would clamp the output to certain ranges. So, that is

not appropriate hence you should choose the linear function and again in this case also g

is typically chosen as the sigmoid function fine. So, the next thing that we look at is the

choice of the loss function.

(Refer Slide Time: 16:10)

And again we will consider both the cases, where a case the first case is the inputs are

real valued and the second case is when the inputs are binary.



So, let us look at the real case first. Now here the objective of the auto encoder is to

reconstruct x i hat to be as close to x i as possible.  Now we have actually seen this

before, so something similar before when we were talking about regression. So, now, you

want to produce real valued outputs and they should match your real valued inputs. So,

what is an appropriate loss function that you can choose the squared error loss function

right.

So, what does this actually capture? It says that for all my input data x 1 to x m. For each

of these dimensions x 1 to up to x 1 n right. I want to make sure that my original input, I

will have a similar x hat reconstructed where I will have x 1 one hat x 1 2 hat and x 1 n

hat right.

So, I want to make sure that each of these pairs of variables are actually similar. And I

can capture that by ensuring that the squared error loss between the i jth entry in my

output is the same as this or sorry. Rather I could capture the squared error loss between

the i  jth entry in the output and the input ok. That is what this function is trying to

capture straightforward similar things we have seen while we were doing regression.

Except that there we had y hat and y, but here we are just trying to reconstruct the input.

So, there is no y here we just have the x. And the parameters of the objective function are

of course, all the variables or all the parameters that we have in a network, which is W W

star c and b.

(Refer Slide Time: 17:56)



And the matrix or the vector way of writing this is the following. So, we have x i. So,

what I am looking at here is I have gotten rid of this summation and I am just written it

in vector form. So, let me just explain what this means. So, this is what x i would look

like right. So, this would be x i 1 x i 2 up to x i n this is the vector. And then you have the

x i hat vector which is going to be x i 1 hat x i 2 hat up to x i n hat right.

So, taking the difference between these two vectors that is what this term is. So, what

you will get is essentially x i 1 hat minus x i 1 up to x i n hat minus x i n right. And then

you are taking the dot product of this vector with itself which will essentially give you

this summation right. So, the dot product of this vector with itself is actually going to be

this summation, it is going to be the sum of the squares of the elements of this vector and

that is exactly what we wanted.

(Refer Slide Time: 19:06)

So, this is a more compact vectorial way of writing the same thing. And now we can just

train the auto encoder by treating it as a regular feed forward neural network this is just a

like any other feed forward neural network you have find the loss function.

And you can just use back propagation to treatment right, but and in this case all we will

need  is  a  formula  for  the  gradient  of  the  loss  function  with  respect  to  with  your

parameters which are W and W star, I have again ignore the biases and the bias is here b

and c. So, we will also need dou l theta by dou b and dou l theta by dou c right. So, these



two gradients also you will need, but these are generally the easier ones to handle if you

know how to compute this the b and c are very easy.

(Refer Slide Time: 19:48)

So, let us look at this now what we need for back propagation as I said we will need this

gradient  right.  All  these four gradients  but let  us focus on 1 of these.  Now we have

already done back propagation  and we have  looked at  arbitrary  neural  feed forward

neural networks here right. We did not have we just said that there are L hidden layers

and in this case L is equal to 1 right, or other we had said there was l minus 1 hidden

layers and the lth layer was the output right.

So, in this case l minus 1 is equal to 1; that means, there is just 1 hidden layer. So, it does

not  matter  we had actually  derived it  for the general  case when l  is  equal  when the

number of hidden layers is l minus 1 and here we just have 1 eight n layer. So, it is much

more simpler than what we had learnt. And even for the number of neurons in the each of

these layers we are just assumed general that it could be R n. And in this case we would

have some R d, which is less than n or it could even be greater than n right.

So but it does not matter because whatever algorithm we had or whatever equations we

had derived for back propagation. They did not care about what this n or d was we had

just derive it in general terms right, and the same for the output layer right.



We did not assume any number of inputs any number of neurons in the output layer we

again said that it has some k neurons, but there the cache is in the earlier case when we

had derived back propagation. We were dealing with classification and we had these k

classes that we want to predict at the output.

And in which case our loss function was actually the cross entropy or the negative log

likelihood  function  right.  Where  we were  trying  to  maximize  the  probability  of  the

correct class out of the k given classes, but here our loss function is slightly different it is

actually this squared error loss between the input and the output.

So, now given this difference in the loss function does it mean that everything that we

learn  in the  previous lecture  on back propagation we just  have to throw it  all  away

because now there is a new loss function? That means, my gradients are going to be very

different from what I had derived for the back propagation loss, where I was looking at

the cross entropy loss as compared to the squared error loss. So, does it mean that, I will

have to throw away all the hard work that we had done in that course in that lecture or

can we reuse something from them we can reuse right.

So, let us look at what we can reuse and I will just give you an intuitive explanation for

that. So, you can think of this as a composite function right. And you are taking your

input passing it through a lot of functions and then arriving at the output, and then your

loss function is actually a function of the output itself.

So, what we have is something like this right we have a situation like this. That you had

an input x you computed some function of it say x square right. So, I will call this as y 1

then you computed some other function of it say y 1 say log of y 1 right. So, they this

was log of y 1. So, in effect it is actually log of x square because y 1 is equal to x square

and then some other function and then finally, you had the output. So, you had this other

function which was sign of I am calling this y 2. So, say this was sign of y 2 and finally,

you had this function which was e raise to y 3.

So, you have a very complex composite function of your original input right and this is

your final output function that you are considering which is e raise to y 3. Now the way

you would do this is if you want to take the gradient of d l with respect to your input d x

right. In that case what would you do is you just apply the chain rule you will right.



It as dou l by dou y 3 dou y 3 by dou y 2 dou y 2 by dou y 1 and then dou y 1 by dou x

right. And this is something very similar that we are done in the back propagation lecture

we had constructed this chain and then we had attacked every element of this chain and

derived how to deal with that right derived an neat expression for that.

Now, the question which I am asking you is that in that lecture we had assumed a certain

l. And that l was actually cross entropy, but in this lecture I have actually changed the l,

what I am saying is the l is actually equal to the squared error loss. Now does that mean

that I have to throw away all this work that I had done no right?

So, even in this example if you look at it suppose I change this function from e raise to y

3 to say square root of y 3. So, I have just changed my l, but notice all of these other

guys are  going to  remain  in  the same,  because y 3 is  still  sign of  y  2.  So,  that  the

derivative of y 3 with respect to y 2 is not going to change. Even though I have changed

the output function the loss function everything else is going to be remain in the same

right.

So; that means, all these portions I could just reuse from the time when I had computed

for this chain. I just need to rework on this final expression and plug it in right. So, that is

why all the work that we had done in the case of back propagation will not go to waste in

particular everything that we had done.

(Refer Slide Time: 24:45)



So, let me just go to the next slide. So, in particular everything that we had done for this

portion of the network right which is actually dou a 2 all the way up to dou W right. So,

if ok, so let me write it like this I want dou l by dou W. So, I can write it compactly as

dou l by dou a 2 and then dou a 2 by dou W right.

So, this portion is not going to change because I am not change any of the functions here,

I have just assumed sigmoid or logistic or the same kind of network. The only thing I

have changed is something at the output layer. So, I will just need to recomputed this and

the rest of it can be reused right. So, that is the intuition which I wanted to give you.

(Refer Slide Time: 25:27)

And that is exactly what is written on this slide. So, I am written it as dou l theta by dou

W star that is the first gradient I have interested in. And I could write it as dou l theta by

dou h 2 dou h 2 and dou a 2 by W star right.

Now, this portion as I was trying to say is something that we have already seen in the

back propagation lecture, and nothing has changed in the network in that part. So, you

can just reuse it as it is and this portion is something that we need to recomputed right

that is the only thing that we need to recomputed and plug it into our back propagation

code or the algorithm, which we had in the previous lecture. And similarly if you want to

do dou l theta by dou W it is the same idea here that you could write it as the following

chain.  And this  part  of  the chain you already  know how to  compute  from the back

propagation lecture.



All you need to do is change the loss function and just try to find the derivative of the

loss function with respect to your output layer which is h 2. That is the final thing that

you have changed just as in my toy example I had changed e raise to y 3 to square root of

y 3 right. That is the similar change that I am trying to do here fine.

So, all we need do is dou l theta by dou h 2, but dou h 2 is the same as x i hat right

because that is my output and my output I am calling it as x i hat. So, I need to take

actually the derivative of this. So, I am just using the vector form here I could have also

written it as this summation over i equal to 1 to n x i j minus x hat i j the 2 whole square

right. I could have also written it as am I just writing it as the vector here in the vector

form here right, but this quantity ultimately is going to be a scalar because it is a dot

product between 2 vectors which is the scalar.

So, what I am doing here is taking the derivative of a scalar with respect to this vector.

So, what is that derivative going to be? It is going to be a vector.

(Refer Slide Time: 27:20)

And I am just, so we have similar stuff in the past. So, you can actually easily work this

out. So, this will actually turn out to be the following vector which is to times x i hat

minus x i right. So, this is very simple I have just computed this and all I need to do is go

back and change my back propagation  code.  And change  this  derivative  of  the  loss

function with respect to the output clear and the rest of the code I can just reuse it as it is.

So, now similarly ah, so we have both of these ready.



(Refer Slide Time: 27:50)

Now, let us look at the other case when we have binary inputs ok. This is the most more

this is something different that we will have to do here. So, we will now look at the

second case where the inputs are binary. So, first we look at case when the inputs were

real numbers, and hence your outputs also needed to be real numbers.

Now, we look at the case where inputs are binary and hence your outputs also need to be

binary. Now here, so each of these guys is actually a sigmoid functions. So, it is in or

rather  if  you look at  the  output  you could divide  into  two parts.  So,  this  is  the  pre

activation and this is the activation right. So, your this is actually the pre activation and

this is the activation right.

So, this activation is actually chosen as the sigmoid function or the actually the logistic

function not the sigmoid function of course, logistic  is  the sigmoid function,  but the

logistic function which was 1 over 1 plus e raise to minus z right. So, logistic of z is

equal to 1 over 1 plus e raise to minus z. And remember that this sigmoid function was

element wise.

That means, this is a is a vector it has elements a 1 a 2 up to a n and then you know apply

the sigmoid to it you get h, which is going to be sigmoid of a 1 sigmoid of a 2 and

sigmoid of a n right. So, it is just the sigmoid applied to every element of the activation

layer. That means, every element of this vector which have circled.



So, now in this case your outputs are going to be between 0 to 1 right, because your

inputs were also between 0 to 1 and your sigmoid or the logistic function is going to give

you clamped outputs between 0 to 1. So, since this is between 0 to 1 we could actually

interpret it as probabilities right. So, we could say that whatever you are reconstructing is

actually telling you that with 0.8.

Suppose, the reconstruction value is 0.8, then you could think of it that with probability

0.8 it is telling you that the output should have been 1 right. And if it tells you that the

output is 0.2 if the sigmoid gives an output as 0.2. Then you could think of it that with

probably 0.2 the output was actually 0 or rather the input was 0 because an input is the

same as the output right.

So, that is one way of interpreting it and this way of interpreting it why does it make

sense.  So,  we  will  just  look  at  that  right,  so  before  at  if  I  do  not  give  you  this

interpretation. And remember that the sigmoid is going to produce values between 0 to 1,

but not necessarily 0 and 1 right it will try to be as close to 0 when the input is 0, but it

could also produce 0.05 and so on. And when the input is point nine it could also produce

something like 0.95.

So, at the output also you are going to get these vectors which are of which would look

something like this right. And suppose you are input was 0 1 0 1 now can think of a

suitable loss function for this yeah. So, again these are two vectors these are x hat and x.

So, once again you could have just gone with the with a squared error loss right, you

could have taken the squared error difference between these two and you could have

been fine right.

So, that is definitely one way of going about it, but whenever we are looking at these

binary inputs. And whenever this probabilistic interpretation is possible we tend to do

something better which is look at the cross entropy loss instead of looking at the squared

error loss. So, I am not saying that the square error loss is wrong in this case, but you

could also use this cross entropy loss. And in practice for our binary inputs the cross

entropy loss often works much better than squared error loss right.
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So, let us see what I mean by the cross entropy loss. So, remember that you have n

outputs  right.  That  is  why this  summation  let  us  not  worry too much about  what  is

written inside for the time being I will explain that, but that is the I just want to explain

the summation first. So, what you are saying is that for each of these green guys at the

output you are going to make some loss. And you just want to some over that loss that is

what we are trying to see.

Now, ideally you could have just written it as just done what you had done before and

written this entire replace this entire box by this squared error loss. And that would have

been just fine right of course, there should have also have been this summation i equal to

1 to m here, because you are going over all the m training instances and for each of the m

training instances you are trying to minimize this loss. So, this 2 summations followed

by this squared error loss would just have been fine.
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, but instead of that I have this something special here. So, let us look at what this special

quantity is. And now for that remember that I am trying to interpret each of these inputs

as a binary random variable. I am saying that they can take values 0 or 1.

So, I can think of it  that when I am given that this value is 0. I can write it  as this

deterministic probability distribution where I have p. And the probability mass is entirely

concentrated out on this 0 value and my the probability mass on the value 1 is 0. This is

something similar to what we had done earlier when we are given these labels suppose it

was apple, orange, mango and banana. And the class label was given to us that this is an

apple. Then we could still write it as the probability distribution where all the mass was

concentrated on apple and everything else was here.

So, I am saying something similar here right. So, you could think of it that two possible

values can occur here 1 and 0 and if I tell you this is 0 right. Then I am telling you that

with probability  1 into it  is  0 and with probability  0 it  is  0.  So,  I  still  write  it  as a

probability distribution now the same thing I can have at the output. So, for this unit

when I am trying to reconstruct it and if I produce the output as 0.2 then I can or rather

let us say 0.8 then I can say that with 0.8 probability I am predicting 0 and with 0.2 I am

predicting a 1 right.

So, now I can think of this again as two probability distributions. And once I some have

two  probability  distributions  I  know that  cross  entropy  is  the  right  or  a  better  loss



function to look at right. And what is cross entropy actually in this case it would be given

by summation i equal to 1 to 2 right or rather i equal to 0 to 1 because if the those are the

values it can take p of i right into log of q i plus yeah. So, p of i into log of q i that is how

I can write it.

So, let me just since there are only two terms I can just expand this summation right. So,

I can write it as p i or rather p 0 log of q 0 plus of course, it is a minus sign here, this is a

minus sign at the out p 1 log of q 1. I can just open up because there are only two terms.

So, I can write it as this is that fine.

Now, also I know that there is this relation between p 0 and p 1 right. That p 0 is actually

1 minus p 1 yeah. Similarly, you have this relation between q 0 and q 1 that q 1 is equal

to 1 minus q 0 because the sum is going to be 1 now let us look at this sum right. So, in

the binary case this sum becomes interesting because. Now suppose your input x i j right

which is the entity that I am looking at, suppose that was equal to 0. In which case all the

probability mass would be concentrated on p 0 and p 1 would actually be equal to 0,

which means the second term would display.

On the other hand if  x i  j  is  equal to 1 then the reverse situation what happen, that

everything would be concentrated on p 1. That means, p 1 is equal to 1 and this guy

would become 0 because p 0 is going to be 0 right. So, there is this another way of

writing it that you could day that instead of x instead of writing p 0 and p 1 you could

just write it as x i j into log q 0 plus 1 minus x i j into log of q 1.

So, now let us look at it again, so when x i j is 0 first which is the same which happened

here just an (Refer Time: 36:20) in same thing right. Because, whenever s x i j is 0 p 0 is

equal to sorry sorry it should have been q 1 and log q 0 sorry i made a mistake here. So,

it have been x i j into log q. So, or rather let me just rewrite it.

So, this is going to be actually I can write it as, I look at this term first. So, I can write it

as x i j into log q 1 and then the second term I am going to write it as 1 minus x i j into

log of q 0 right. And then I am going to simplify this further, but let see what is the

consequence of this.

So, now whenever x i j is equal to 1 this term will remain and the second term will

disappear and that is exactly what was happening in our original formula right. So, this is



just an equivalent way of writing your x i j is equal to 0 this term will disappear, but this

term will remain; that means, log q 0 will remain this is exactly what was happening in

our original formula right.

So, that is so now, I have given you why a I can replace p 0 and p 1 or rather p 1 and p 0

by x i j and 1 minus x i j. And now I can make a similar argument for x hat i j also. So, I

can think of q 0 as whatever  s predicted at  the output right sorry I  can treat  q 1 as

whatever is predicted out 1 output.  So, whatever my sigmoid function predicts  I can

think of it as it is predicting the probability of getting a 1 right. So, it is just predicting

the heads probability or the probability of getting 1. So, I can instead q i q 1 i can write it

as x i j hat, and similarly instead of q 0 I can write as 1 minus x i hat i g right. So, did

you get that so these become very messy.
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So, let me just clean this up and I will just go over this again right.

So, what I was trying to tell you is that in the ideal case you could have just replaced this

by the  squared  error  loss,  but  since  you are  dealing  with  binary  inputs  you can  do

something better because you can interpret the outputs as probabilities. So, when you get

a 0.2 here you can interpret it as it is telling you that the probability of this unit being 1 is

0.2, it is very less. And that is the same as saying that the probability of this unit being 0

is 1 right.



So, you can interpret this as a probability. Now if you think of it that way then you can

say that at the input you are actually given a probability distribution. So, which tells you

that in the first case your probability distribution looks like 1 0 right, because all the

mass is focused on value 0 because your input is 0 at that case. And now suppose your

output was 0.2 right and 0.2 is what you are treating as a probability of. So, this is the

probability of 1 this is the probably of sorry this is the probability of 0 oops and this is

the probability of 1.

So, if your output is predicting 0.2. That means, it is predicting 0.8 for 0 and 0.2 for 1.

Now if you think of it this way then you can capture the loss function between these two

guys using the cross entropy formula. Which is going to be summation i equal to 0 to 1 p

i log q i is that fine ? And now I just said that the since there are only two terms I can just

write it as p 0 log q 0 plus p 1 log q 1.

Then I focused on this relation between p 0 p 1 and your input. So, whenever your input

is 0 your p 0 is going to be 1. So, then I can just replace p 0 by 1 minus my input right.

So, if the input is 0 then this guy is going to be 1 and that is exactly what this expression

is also going to be.

So, I can write it as 1 minus x j log q 0 and similarly for this second guy. Whenever input

is 1 this guy is going to be 1, whenever my input is whenever my input is 1 this p 1 is

going to be 1 whenever my input is 0 this p 1 is going to be 0. So, I can just replace p 1

by log by x i j and now you can see that this expression evaluates to the same as this

expression right, you can substitute value of x i j 0 or 1 you will get the corresponding p

0  p  1  which  would  be  1  or  0  depending  on  what  your  input  was  and  these  two

expressions will evaluate to the same thing.

So, just as I replaced the ps by x is x i js, I can similarly replace by a the qs by x i j hats

right because once again q 0 is nothing, but 1 minus whatever my output was predicted

because whatever is predicted I am treating as the probability of getting a 1. So, 1 minus

that is going to be the probability of getting a 0. So, that is what q 0 is and similarly q 1 I

can replace by x hat i j. And so that is exactly what I have done in this expression here.

So, now this expression every term in these n terms captures the cross entropy for that

particular random variable right. So, this is the original distribution p for this random

variable. This is the predicted distribution q for this random variable, and I have just told



you that  this  the cross entropy between these two distribution can be written  in this

simple form as the function of x i j and x hat i j.

So,  this  is  the  standard  thing  to  do  when  you  are  dealing  with  Bernoulli  random

variables. So, you can go back and read up a bit about it ah, but for now I guess with this

explanation it  should (Refer Time:  42:15) to know why this  expression is used.  And

remember that I am not telling you that this squared error function was bad. I am just

telling you that instead of the squared error function cross entropy loss function works

better when you are dealing with binary inputs fine.
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So, with that let us pursuit and the another we have looking at it is the following you can

now look at this expression. And tell me when is this expression going to be minimized.

So, we have x i j and x hat i j you can see that this expression will be minimized only

when x i j or rather x hat i j is equal to x i j right. So, now, x i j could take value 0 or 1

and now x hat i j could take 0 1 or 0 1.

So, you can see that for these two combinations the value is going to be minimized only

when x hat i j is actually equal to x i j. That means, if x hat if x i j was 0 then x hat i j

should also be 0. And similarly in this case also if x i j was 1. Then the expression will be

minimized only when x hat i j is equal to 1. So, let us see this so suppose x i j was 0. That

means, this term is going to go to 0, but this term is going to remain and now if you are x

hat i j was not equal to 0.



Then you will get some log of 1 minus x hat i j as the loss right, but if x hat i j was also 0

then you would get log of 1 which is 0. So, this whole expression would then evaluate to

0 which is the minimum possible value for this expression right.

So; that means, if x i j is 0 then this expression will be minimized only when x hat i j is

also equal to 0. Similarly, if x hat i j sorry if x i j is 1 then this 1 minus 1 will give you 0.

So, this term is going to disappear, but this term will remain. So, this will just be log of x

hat i j because x i j is equal to 1.

Now, if x hat i j is also equal to 1 then this is become log of 1 which is 0. That means,

again this expression will attain it is minimum value when x hat i j is equal to x i j is

equal to 1 right. So, this expression now attain it is minimum value in two cases when x i

j is equal to x hat i j is equal to 0 or when x i j is equal to x hat i j is equal to 1. So,

compactly I can say that this expression will attain it is minimum when x i j is equal to x

hat i j, that is why this loss function makes sense.
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Now, again we have this problem that we want to use back propagation to train this

network. And once again for back propagation we will need the following gradients the

gradients of the loss function with respect to W and W star. This is what we are going to

need and I am going to make this same argument again that whatever hard work you had

done in the back propagation lecture you can just reuse all of it.
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 because the only thing your changing is this final loss function. So, you just need to

compute the gradients with respect to this loss function and everything else is going to

remain the same right.

So, that is exactly what I am going to do on this slide. So, whatever is in the boxes here

these two boxes that is something that you have already computed. And now what I am

going to compute is the stuff which is outside the boxes, so let us look at that. So, I am

interested in computing this  dou l theta  by dou h 2 this  is  the derivative of a scalar

quantity with respect to a vector, say it is going to be a vector. And I am going to follow

our usual recipe which is h 2 is actually equal to h 2 1 h 2 2 up to h 2 n.

So, I am going to consider any of these guys which is h 2 j, I am going to compute the

derivative of the loss function with respect to this one entry and since I have that I am

going to construct the entire gradient right. So, now, I will have this dou l theta by dou h

2 j right and once I have that expression I am just going to generalize it to all the other

entries in this vector.

So, let us look at that expression first. So, now, if you look at this actually it does not

have an h 2 j right, but we know h 2 j is the same as x hat j or rather x hat i j right for the

ith input it is going to be x hat i j. Because h 2 is equal to x hat i ok, you can just see that

the top left corner of the slides say x 2 is equal to x hat i. So, this is nothing dou l theta

by dou x hat i j.



So, now I want to take the derivative of this quantity with respect to 1 particular x i j, and

remember that this quantity has the sum which is indexed over j. So, j goes from 1 to n I

am looking at 1 particular j. So that means, if I expand this sum of all the js possible the

derivative with respect to all, but 1 is going to be 0, because they do not depend on this

particular j. So, if I am looking at z equal to 3 then the term which has x hat i 1 is going

to the derivative of that term is going to be 0.

So, for all these terms in the expression only that term where a j is equal to the j which I

am considering is going to remain k. So that means, only one term in the summation

would remain and for that one term, so let me just rid of the summation right. So that

means, only one term in the summation would remain, I am trying to find the derivative

of this quality x which has a lot x i js with respect to x i j.

So, now this is of the form a log x, so the derivative would a over x right. So, that is

exactly what I have written here and similarly for the second guy this is 1 minus a into

log of 1 minus x. So, the derivative is going to be 1 minus a over 1 minus x and of

course, there is this minus sign here which will then get adjusted appropriately right. So,

that is how this expression has been completely that is very straight forward and now as

you need the derivative of h 2 j with respect to a 2 j.

So, remember that h 2 is equal to sigmoid of a 2 which means it is just an element wise

sigmoid right.  So,  I  just  need to compute the derivative of the jth entry of h 2 with

respect to the jth entry of a 2 all the other derivatives are going to be 0 because they do

not depend on that particular entry of a 2. So, now, that is just going to be sigmoid of a 2

into 1 minus sigmoid of a 2 right.

So,  I  have  computed  these  two  quantities  I  can  just  plug  it  then  back  into  back

propagation  code.  The rest  of  the  code is  going to  remain  the  same and I  have  the

gradients ready with me right.
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 And as I said once I have this one guy I can just extend it I can just generalize it. So, I

just had these js here right for h 2 j, so I can just replace the j by 1 2 up to n and I will get

the same expression.

So, that is the end of module 1 where we introduced auto encoders. What we showed is

that they are actually just like any other feed forward neural network accept that they

have this special objective. That they want to reconstruct the input and the reason they

want to reconstruct the input is they about to first create a bottle neck which is this h

hidden representation. And then try to reconstruct from there and just as I gave you that

compression analogy that you have this 10 bits you want to compress it to 4 bits and then

reconstruct the entire input again.

So, this will happen only if these 4 bits capture everything that is required or the most

important  characteristics  of your original  input right.  And then we could have a loss

function  which  tries  to  capture  the  difference  between  my  original  input  and  my

reconstructed input.

Now, we argued that this loss function will be dependent on the nature of your input. So,

for the real inputs it was straight forward we just said that we can use the squared error

loss function for the binary inputs we actually did something special. We said that we can

actually  use the cross entropy, and then we had this  funny way of writing the cross

entropy which was this x i into log of x hat and 1 minus x i into log of 1 minus x hat.



And just gave you some intuition that that is the same as writing p log a pi log or rather p

0 log q 0 plus p 1 log q 1 write and the I just gave you some explanation for doing that.

You can go back and check on how do you write the cross entropy for Bernoulli random

variables  and you will  see  that  this  expression  makes  sense.  And once  we had this

expression computing the gradients was easy. So, the other thing that we relied on is that

in the back propagation lecture we had taken care of everything up to this point and in

this lecture we have actually changed the loss function.

So,  1  loss  function  was  the  sum of  squared,  squared  loss  errors  and the  other  loss

function was the sum of sum of cross entropies whereas, in the back propagation lecture

we had only dealt with cross entropy by the case that we made is that sense you have this

chain. I know all you have done is change the last function in the chain right, you have

changed this l function all the other functions you have not changed.

You can just reuse the computations from these or you can just use the code that you had

written for these in the back propagation assignment. And you just need to change this

last guy to adjust for the change in the output layer or the change in the loss layer. So,

with that we will end the introduction to auto encoders, there we have done we have

actually covered how to train an auto encoder using back propagation. So, that is where

we will end.


