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Gradient Descent with Adaptive Learning Rate

So, finally we come to the more interesting part. So, in this module we look at Gradient

Descent with Adaptive Learning Rate. So, first we will see motivation or intuition for

why  we  need  this  and  once  you  get  the  motivation,  I  believe  the  rest  should  be

straightforward, ok.

(Refer Slide Time: 00:31)

So far what we have been doing is, please pay attention on this slide. I need to define

some notations and you should not get confused with that,  ok. So far we have been

dealing with the situation, where we had just one feature which was x and one weight

corresponding to it  which was w and one bias which corresponded always on input,

right. Now, we are going to look at the situation where we have more than one inputs.

That means, earlier we were basing our predictions only based on the director and now,

we are the director, actor, genre, IMDb ratings and so on, right

So, here x 1 x 2 x 3 x 4, these are four different features or four different inputs that I

have, and this is not x square. Just I know it is obvious, but I am just making it clear,



right. So, this is x 1 x 2 x 3 x 4, ok. It is not probably the best choice of notation, but I

will just stick to that. So, now each of these has a corresponding w 1 w 2 w 3 w 4, and

this is how your decision looks like. It is the dot product between the weight vector and

the input vector, ok. This is how I am going to decide and that is a single sigmoid neuron

again.

So, given a single point xy, do I need to again go through this computation? Sorry w, p

oh sorry, ok. I will just erase this. So, this w is actually the vector w. So, it includes w 1

w 2 w 3 w 4 and I am trying to take the derivative with one element of that vector. Do I

need to show you how to compute this? Have you seen this before? Can you tell me I

will show you the derivative with respect to w 1, can you tell me it will be a product of

some terms? Can you tell me what is the last term going to be?

(Refer Slide Time: 02:41)

Everyone gets this? You remember this form. So, only thing which is changing is this

guy, right. So, this part is exactly what we have derived and when we had one input, we

just call it x and now, we have multiple inputs. So, it will depend on that particular input,

right whichever w 1 corresponds to, ok.

Now, make an interesting observation there, ok. So, sorry before that yeah this is obvious

if there are n points, we will just take the sum of the gradients with respect to the n

points, ok. Now, what happens if the feature x 2 is sparse? What do I mean by that? It is

mostly 0, ok. What does that mean? So, I am looking at lot of movie data, ok. Amir Khan



acts in a very few movies. So, if I have a feature which says actor Amir Khan, then that

is going to be 0 for most of the movies in my data scene, right. That is what I mean by

sparse, ok.

So, if I have 10,000 movies, then probably only 50 of them would have this feature as

one, ok. Does that make sense? So, it is going to be very sparse. Now, if the feature is

sparse, why do we care about it? What will happen? What do we really care about when

we are talking about optimization in this course, the gradients, right. That decides how

well we move in the plane that we are considering w b plane or the other in the end

dimensional region that we care about, ok.

So, now if x 2 is sparse, what would happen to this? It will be 0 lot of times because x 2

is 0 lot of times, right. So, now just take a minute to understand this, right. So, now

remember let us talk about stochastic gradient descent or mini batch gradient descent or

even batch descent.  You are going over all  the 10,000 points that  you have,  you are

computing the gradient with respect to all the parameters. 

One of those parameters happens to be w 2, right. You have gone over 10,000 points, but

in how many of those you will actually get the gradient for this. Only in the 15 which x 2

was present, right. Everywhere else the gradient would be 0. So, that means your sum of

the gradients, overall the endpoints is going to be small or big.

Student: Small.

Small for this particular feature or for this particular weight; it is going to be small, right

because you do not have enough samples where you are seeing this. So, now what would

happen to the update? You started with a random value for w 2, ok. After one epoch or

making one entire pass of the data, what would happen to the updates for w 2? Very

small, very few updates compare this to a feature which is dense. Do you get a lot of

updates? So, you see there is something unfair happening here. If a feature is sparse, it is

not getting updated enough, right. 

Now, that  was ok.  In one situation if  this  feature was not really  important,  but  now

consider the exact example which I gave you which is this, an Amir Khan movie or not,

but suppose I am doing a classification whether this movie is going to be hit or not, I

would believe this feature is very important because almost always when he is the actor,



the movie is a hit, right. So, you really cannot ignore this feature. You want to learn the

parameters correctly for this feature. Do you get the setup right? There could be cases

where your feature is very sparse, but at the day at the same time very predictive of the

output that you are trying to learn, right and in this case, the output is whether the movie

would be a hit or not, ok.

The  other  example  could  be  is  Christopher  Donald,  the  director.  So,  yes  probably

directed less than 10 movies, but all of them have been at some point in the IMDb top

250 or something, right. So, that is a very important feature, but you will not get it very

frequently in your data, right. So, you cannot really ignore these features. That means,

you still want to learn these features properly. So, you have sparse features; you have

dense features. We understand that for the sparse features, the updates would be slower

and for the dense features, the update would be faster, ok. All of us get this, fine. Oh no,

the sparse would be 0 in most cases. No no. So, you will do this 0 mean thing, right.

No, but if it is a same value and you are going to 0 mean the data, right. So, the value

even if it is 1, it is going to be very close to 0, right. So, you always assume 0 means

otherwise all this does not make sense, right because if your features are not in the same

range, then anyways you are in trouble, right fine. So, this is what I was trying to say that

the gradient with respect to w t is going to be 0 for most inputs and hence, w t will not

get enough updates and as I said if this is an important feature, we cannot really ignore it.

We have to make sure that it learns better.

So, what is the case that I am making for? What do we actually need? Can you relate it to

the discussion on learning rate that we have been having? So, if the feature is sparse, you

know it is going to get very fewer updates. So, can we change its learning rate, so that

feature  gets  updates  a  bit  faster  as  compared  to  the  other  features.  So,  you get  the

motivation, right? How to do this is a separate story, but at least we need to do this. Is

that clear? How many of you get this? Ok fine.



(Refer Slide Time: 07:49)

So, the intuition is decay the learning rate for parameters in proportion to their update

history. So, you have been recording the update history, you have been looking at the

parameter, you know all the gradient w 2 that you had calculated so far, right. How many

times you had computed the gradients and what those values were actually now for these

sparse features? Those are going to be 0.

So, your cumulated history is going to be small, right. For a dense feature, it is going to

be high. So, why not make the learning rate inversely proportional to this history. That

means, if the feature has been updated fewer times, give it a larger learning rate. If it is

not updated, if it is updated many times, give it to a smaller learning rate. Can you give

me a mathematical formula for doing this? This is the intuition. Just think about it for a

minute learning rate inversely proportional to update history, ok good. How many of you

get that, but most of you will get it once I show you the answer.

This is my gradient which I had computed so far. I mean at this time, step I will keep

accumulating it in a history vector, ok. So, at time step 0, I will take the magnitude of

this again. I am taking the magnitude right because it does not matter whether you made

an update in the positive direction or the negative direction, you just matters that whether

how much, by how much it move. So, I will just square this quantity, so that I can get rid

of the sign, ok. So, I am taking the magnitudes and I am storing all that. So, at time step t

what would vt contain? It is grad w 0 square plus w 1 square grad w 1 square and so on



up till time step t, ok.

Now, this was my if I ignore this quantity, this was my normal gradient descent update

rule, ok. Now, do you see what I have done? I have divided the learning rate by whatever

history I had accumulated. So, for the dense features what would happen is, the learning

rate will increase or decrease with time, the learning rate will decrease, right and for the

sparse features, relatively less right; In fact, if you have written gotten 0 updates so far.

So, when you have to update the first few times, you will have a very high learning rate.

Does that make sense, right because this quantity would be 0. So, our eta would actually

be very large, ok. So, you see how that intuition got converted into some reasonable

formula, fine.

(Refer Slide Time: 10:13)

Now, can you tell me a way of actually realising this? I want to show you that what

happens when you have sparse data and I want to do this with the example that we had

where we had only one feature and other feature was always on, right. So, how do I

create this sparse data? So, you should think about these because these are things you

will have to do when you are practising machine learning and if you are working with

the problem and you want to create some simulated data, so that you can verify some

hypothesis that you have. So, how would you do this?

See I am going to create thousand data points, right which is x, y points and of course, I

have this x 0 which is always on, right. So, x 0 is always on. I cannot make that sparse.



What about the other feature? If I am creating thousand data points, what should I ensure

is that 80 percent of them or some 90 percent of them is always 0, right. Just as the Amir

Khan case and most of the data it is going to be 0. So, what we will do is as I said we just

have two parameters w and b. We cannot make sparse is always going to be on. So, what

we will do is, we will make x sparse, we just create random x, y sparse and then, for 80

percent of those we will set x to 0, right. So, now this x feature is going to be very

sparse. Is that fine?

So, now I have created some data which is sparse. One of the features is sparse and now,

I  want  to  see  what  happens  when  I  run  gradient  descent  momentum  and  Nesterov

accelerated gradient descent and how does the algorithm behave and now, if I apply this

algorithm  which  I  did  not  name,  it  is  called  Adagrad,  ok.  This  algorithm  is  called

Adagrad if I apply this algorithm, then what how does the situation change, fine.

(Refer Slide Time: 11:55)

So, this is what gradient descent momentum and nag do. Now, at least the difference

between momentum and nag should be clear. Nag blue curve is inside the red curve right.

So, oscillations are slightly smaller, ok. This is how they behave, ok.

Now,  there  is  something  very  interesting  that  these  algorithms  are  doing  for  this

particular data set that I have created.  Can you spot it? What is the interesting thing

happening  here  I  want  you  to  take  some  time  and  think  about  and  relate  it  to  the

discussion that we just had how many of you see what is happening here, ok. Very few I



will give a hint, ok. It is almost as if these algorithms went to a school where they did not

teach  Pythagoras  theorem.  Now, related  to  the  discussion  that  we  just  had  what  is

happening initially. So, initially what is happening is you started from here, and this is

the w, b planes. So, you have w on the horizontal axis and b on the vertical axis.

What is happening to all your updates initially where are you moving? You are moving

along the b direction. Are you making any movements along the w direction? No. Why w

was sparse? Its gradients are mostly 0. It was not being able to make any updates in the

w direction or it was able to do make updates in the b direction. It did as much as it could

do after reaching here it realizes that there is no point in going to be further, right. It

actually took u-turn because it realise that there is nothing I cannot really go ahead. I

have to now start working in a direction of w.

So, now in practice although in this toy example, it does not, it still converges fast, but in

practice what will happen is you have just moved in one direction, reached a point and

now from there again you are going to take right turn and reach to your destination, right.

So, you are taking, you are doing something which is not fast. This is not how you would

go from this point to this point. There has to be a better way, right and this is happening

because w is not getting updated frequently. All the updates are initially done for b.

Now, when it is no longer possible to change d because your d is the optimum value for

b, then only you start changing w and that to very slowly because it will have to wait for

many updates. For that to happen how many of you get this? So, this is exactly what is

written on the slides because in our data the feature corresponding to w is sparse and

hence, w undergoes very few updates and these very dense and it undergoes a lot of a

updates, ok.

Now, such sparsity is very common in large neural networks which have thousands of

features,  right.  So,  you can imagine  this.  Now, if  I  have thousands of  features,  now

suppose  I  am  doing  credit  card  fraud  detection,  now  say  one  of  my  features  is

corresponding to some education that the person had and suppose he has done some very

less sort after degree or less sort after curriculum.

So, that feature is going to be sparse where most of the cases, but I cannot ignore it. May

be this is the most predictive feature that I might have, right. So, you could think of

various cases where you have thousands of features out of which many are going to be



off for a given example, right. Everyone sees that this is the real world scenario where lot

of your features are going to be sparse and in many cases, you cannot ignore the sparse

features, fine. Now, let see what Adagrad does. Any guesses?

(Refer Slide Time: 15:18)

So, I am running this, we should start seeing something a green curve starting from here,

ok. Do you see what is happening expected? Now, try to guess if you are going to run

into a problem. I have deliberately halted the algorithm. I just want you to think if you

are going to run into a problem, ok. All of you think you have something which makes

sense. So, now I have run it for in this case again this is the toy example. Hence, you do

not see a lot of difference between these algorithms in terms of number of steps taken to

converge, but in real world application, it  would be very different, but now what has

happened is I have run the algorithm for as much I can and I am then stuck here. I am not

being able to move forward. Why is this happening?

Well, I am the histories accumulating it is growing. Now, what am I doing to the learning

rate? I am just killing it, right. It is eta by a very large constant. Now, that is going to be

very small. So, no matter how big my gradient is, it is going to get multiplied by a very

small learning rate and I cannot just move any forward anymore, right. So, see that will

happen. That is why in this case this is some point here which I do not want to go over

now and it is this.

In fact, I do not have an explanation for that, but this one observation which people have



made that  remember we have the square root in the denominator. If you remove the

square root in principle, you are still doing the same thing, right. You are still making it

inversely proportional to a cumulated history, but it does not work well when you do

that. That I do not know why it happens and I just read these comments at several places

that it does not work when you remove the square root from the denominator, but that is

not important for this discussion. That is just point for reference later on, ok.

So, right now what I am trying to say is that it  did the right thing. It started making

updates for w also and started making larger updates, hence we see this simultaneous

moment and o w and b direction. But the flip side is over a period of time, the effective

learning rate  for b will  decrease so much that  we no longer  be able  to move in the

vertical direction, right and if I am not being able to move in the vertical direction, we

will not reach the minima. In this particular example not always, but in this particular

example  you  need  to  move  further  in  the  direction  of  b,  but  a  learning  rate  is  not

allowing you to do that, right. So, that is what is happening.

So,  now can  you  avoid  this?  Yes.  How? Multiply  by, so  first  divide  it,  so  that  the

decreases, then multiply it. So, that does not decrease. All of these are interesting ideas. I

am not I mean it is very, we say upfront whether this is wrong or right, but yeah these are

you get the idea basically something is happening which is you are aggressively killing

the learning rate.

(Refer Slide Time: 17:59)



Now, I just want to make sure that you are not so aggressive, ok. So, what happens

because of the aggressive killing, is the frequent parameters, they start receiving fewer

updates. Now, this is what RMSProp does, ok. I want you to stare at this for a minute,

ok. Assume that beta is going to be something which is greater than 0.90 or 0.95 or

something and try to make sense of what is happening, try to imagine what is vt is going

to look like, in terms of grad w 0 grad w 1 and so on. To start from v 1 and see what

happens what was v 1 earlier and what it is going to be now ok, but it still grows my

magnitude when I am still adding stuff. So, how does it help me in not blowing of the

denominators?

So, yeah I think you most of you get. So, again this is the trick is basically you are using

this exponentially, exponential moving average, right. So, even at the first step earlier I

was doing grad w t square. Now, actually doing 0.05 into grad w t square, oh sorry grad

w 1 square, right. So, that is what my v 1 is going to be. Now, what is my v 2 going to

be? It is going to be 0.95 into 0.05 grad w 1 square plus grad w 2 square, right. So, this

quantity is even shrinking further and at each step this is going to keep a 0.05, and you

see now at each step this is going to get multiplied by this quantity and shrink further, ok.

So, now I am not aggressively growing the denominator. I am not considering the full

gradient, but only a fraction of it and in fact, a very small multiple of it. So, I am still

accumulating the history, but I am not being very aggressive while doing that, right. So,

you understand this. You did not get this, ok.



(Refer Slide Time: 19:54)

So, now let us see if we run what would happen. Any guesses, ok? So, initially now this

is I think a brown curve. It is already there, but you can see it. So, I will keep running it

and at some point, it will diverge from the green curve. Yeah do you see that? Now, I

have reached its destination, right; so, at the point where the b learning rate, the learning

rate  for  b  was  getting  killed.  In  this  case  that  does  not  happen  because  you  have

prevented  the  denominator  from growing  very  large  actually  multiplied  by  its  small

values, so that it does not grow very fast. How many of you get this? Ok. Not as many as

I would like. Can you please raise your hands, ok? Yeah some people as just lazy fine.

So, Adagrad got stuck when it was close to convergence because the learning rate was

killed  and  it  was  no  longer  able  to  move  in  a  direction  of  b,  but  for  RMSProp,  it

overcomes this problem by not growing the denominator very aggressively, ok. Now, can

you think of any further modifications? There is everything that you learned so far and

my everything yeah. 

Yeah I am not very sure why that I agree that I am also bit surprised that it completely

overlaps with it.  I checked it and that is how it turns out to be and guessing it is an

artifact of the artificial data that I have created. So, it is trying to say is actually making

sense that  it  should not  overlap so much,  right.  Initially  it  should slightly  be biased

towards b and then, probably that is what you are trying to say right, but I told it just an

artifact of this data that I have, but what matters is from as going to say illusion, but from



the illustration is that it actually does not kill the learning rate, right.

(Refer Slide Time: 21:48)

So, what is the one idea that now think of everything that you learned in starting from

gradient descent, then you tried to improve it using something, then you tried to further

improve it  and so on and now, we have taken a slide d 2.  From there you are now

focusing on the learning rates, but there were other things which you are doing earlier.

Can you bring those back, add momentum. How many of you say add momentum as if I

can just added. You are right actually, ok.

So, let us see what we can do. So, it does everything that RMSProp does. That means, it

tries to make the learning rate inversely proportional by sane to cumulated history. By

sane mean it does not allow the x 2 blow up and it also will use the cumulative history of

the gradients.  So,  let  us see the update tool for Adam. So, what  is  this  term doing?

Actually it is taking a moving average of; there is the same as the momentum base role,

right. Just taking a moving average of your gradients, ok. The same analogy that I am

going to phoenix market city, I am just taking all my history into account, and vt is again

a cumulative history. This is the same as what was happening in RMSProp, right where

you get lost. Is this fine? Everyone is with this, ok.

Now, what would be the next step? Can you give me the final update rule? At least think

about it. Mt into vt, no. Ok just try to think about it and it is very hard to say it out there

are too many grads and suffixes and so on. So, just think about what you did in the



momentum case, ok. Now, there is one more step which I am going to ignore. I will just

say what that step is and then, I will come back to that later on.

So, this is something known as bias correction, ok. Just ignore it for the time being. I will

come back to this discussion. Just for the time being just assume that I am taking mt and

dividing it by some quantity, right. So, for all practical purposes I am just using mt, just

dividing it by a quantity, just for now. That should suffice and then, my final update rule

is going to be this. How many of you expected to do with this or at least understand that

this is fine or not many, ok.

So, let me go over this. What did you expect here in a normal gradient descent? They

should have been grad w t.  That  means the derivative with respect  to current w, ok.

Instead of that I am using a cumulated history. Instead of using just this quantity, I am

using a cumulated history. Does it make sense? This is same as momentum base gradient

descent. How many of you get that? Ok and now, this quantity there is nothing new. This

is the same as what RMSProp suggested that you divide the learning rate by a cumulated

history of gradients, right. So, just a combination of these two, one is take care of the

learning rate and the other is use a cumulative history. Does it make sense now? Ok, fine.

Now, this part is something that I need to tell you about. So, I will tell it to you after I run

the algorithm and then, I will come back to that, but is the update rule clear that it is a

combination of momentum plus killing the learning rate, fine.

(Refer Slide Time: 25:19)



It is a similar set of equations for bt.

(Refer Slide Time: 25:21)

Now, let us see what happens to this algorithm is actually call at Adam. It stands for

Adaptive Moments, right. Yeah what is can you tell me why that name?

Why moments?

Student: Sir, mean is.

Good, where is the mean? Here this is a mean. This is a moving exponentially weighted

average, right. This is an exponentially weighted mean. What about this? What is this

quantity?  If  you take  the  average  of  this  is  the  second moment,  right  exponentially

weighted second moment, right. So, using the first moment and the second moment we

come up with an adaptive learning rate, ok. Is that fine?

So, now I will run this algorithm. Are you able to see this? See a coloured curve k. So, it

is here you see that now do you see what happen? Do you see this curve? Everyone sees

that, ok. So, what is happening, it is taking u-turns, right. So, again whatever happens

because of momentum, it  is happening in this case and then,  finally  it  will  converge

again. Let me be clear that in this case now it should be very clear. We need to change,

who is TA for the slide. So, this colour needs to be changed or it should be bright right

from the first. So, what is happening is it is getting overlaid and then, it becomes bright

when we need to have a brighter colour right from the beginning, ok.



So, this again in this toy example, right; You do not really see the speed as such because

all of them are converging you know almost the same number of steps, but this again I

repeat for the toy example, but at least you see that the behaviour is very different and

behaviour is consistent with whatever you have put into the update rule, right. In one

case the learning rate gets killed, in the second case it does not decay and in third case

when you using this moments, sorry this momentum term you again have this behaviour

similar to the momentum gradient descent, where you actually overshoot and then, you

come back, ok. So, is that clear all these algorithms? Now, here is the million dollar

question.

(Refer Slide Time: 27:53)

Which of these do you use in practice? So, what are the options that you have for your

back propagation assignment? Even if you have not read the assignment, you should just

tell me based on whatever you have learned you have gradient descent.

Student: Momentum.

Momentum.

Nag RMSProp.

Student: Adagrad.

Adagrad Adam, ok. So, which of these would you choose and if there is one or which is



called eve, but it did not really gain much momentum, but Adam. So, in practice Adam

seems to be more or less the default choice. I should tell you that recently there was a

paper or called couple of papers which actually show that there is a slight error I mean

there is you could showcase where Adam will not actually converge as expected with,

but still then after that as is the case in whole of deep learning resources that one person

sees this work and immediately the next is someone else. This does not work or vice

versa, right.

So, someone show that this does not work. Adam does not work in some cases, but then

someone else did detailed study showing that in most practical applications, you have

taken a toy data set where you can show something under some conditions. Adam will

not converge, but if I look at real world data sets like m or image data or something,

those conditions do not hold there. So, Adam really works well. So, in practice Adam is

more or less the standard choice. Nowadays at least all the image classification work

which deals with convolutional neural networks and convolutional neural networks and

so on, that uses Adam as the optimization algorithm.

We have used it  largely for a lot  of sequence to sequenced learning problems and it

works well. Although it is supposed to be robust to the initial learning rate, right because

you are tampering with the learning rate as you go along, right. You are not sticking to

eta, but you are conveniently blowing it up or shrinking it based on your requirement.

So, it should not be sensitive to the initial learning rate, but we have observed that at

least for the sequence generation problems if you use one of these learning rates as a

starting point, they work best of course. Of course these are heuristic,  right. We also

depends on how much data you have and so on.

If you are going to train, but only thousand samples and first of all of course you should

question why are you using deep learning, but you have gone pass that question already.

Has everyone else has, then you are still be using a deep neural network and in that case

may be these learning rates are going to be very small, but in general for a large number

of data sets out there which lot of academic research happens which are of reasonable

size, these learning rates happen to be well in tractors, ok.

Now, having said that many papers report that sgd with momentum either the Nesterov

momentum  or  the  Vanilla  momentum  with  a  simple  annealing  learning  rate;  We



remember we did this learning rate decay either a constant decay or that heuristic decay

that after you look at the validation loss and then, decide whether to decay or not. That

also seems to work at part of the Adam, right. So, my advice be that if you really know

what you are doing with sgd and momentum right, that means if you really know how to

look at the laws, how to track it, how to adjust the learning rates and so on.

With a little bit of manual tampering, it should work as well as Adam, there are people

which show that it works well as Adam, but if you are just a practice. There who does not

really want to bother too much about setting the learning rate, setting the momentum,

setting the schedules on both of them, remember for momentum also we had a schedule

and was just given by one of these papers and it might differ for your application. You

might want to treat that a bit. So, if you are not really bothered about doing all these

things,  then Adam would  just  be over  all  the best  choice,  right  with very  minimum

tempering of the initial learning rate, right.

As I said some recent work suggested there is a problem with Adam and we will not

converge in some cases, but then it still I mean I would say that juries not out on that yet

because there is of course theoretical  angle to it  and also,  the practical  angle.  Again

practice has been used widely for the last 3 to 4 years. At least and it works well in a

large number of applications, right. So, that is why Adam would typically be the overall

best choice, ok.

Now, there is this one thing which I need to do which is I need to tell you why do we use

this bias correction? So, now what do you actually want to you are taking a mean, ok.

You do not want to rely on the current estimate of the gradient, but you want to take an

exponentially moving average of the gradients, right

Now, what would you actually would be doing all this, what is the inclusion behind this

since you are talking about moments and so on? Can you think in terms of probability

distributions? So, let me just try to say this we write that your gradients, your values of

grad wt, right and I will just I think alternately use gt instead of grad wt, just needs to

gradient in that form. It actually comes from some distribution depending on the point at

which you are, right. The gradient would change, but it comes from a certain distribution

and now, what you actually want at any time step when you are making this update, this

particular update ok. Is it clear? Yeah when you are making this update, what would you



actually want? It should not move too much away from sorry.

So,  now your gradients  how you are  computing  say if  you are  doing the  stochastic

version, you are computing it for every point that you have, right. With respect to that

point  you would  have  some loss  function  and  some derivative  with  respect  to  your

parameters. If you move on to different point, you will have some different parameters.

So, there is some randomness in this, ok. So, I am saying that these gradients would be

treated as random variables which can take on values according to a certain distribution,

ok

Now, what do I mean? So, what would I actually want when I am making an update. So,

I have to make the basic choices. I could have just use grad wt which is the derivative

with respect to the current time step. Add the current time step, ok. Instead of that I know

why I am not happy with that because it has this problem that it could pull me to the

extreme. So, at this point is actually saying change it, change your w value in a particular

way which is more suited to me some other point would say something else. So, what we

want is that whatever update we make should be very close to the dash of the distribution

mean of the distribution, right and instead of computing the mean, we are computing a

moving average and exponentially moving average, ok.

So,  now what  do  we actually  want  to  say  I  said  that  gt  is  the  random variable  for

denoting the gradient, ok. What do I actually want? I want the expected value of mt

should be equal to what the true expected value of gt. This is what I want because I want

to I do not want my updates to move in the extreme. It should be closer to the average to

the  mean  of  the  distribution.  Do  you  agree  that  this  is  my  wish  list?  This  is  what

something that I should desire for, ok. Now, let see what is mp actually if I want to write

it as a formula.
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So, I have mp is equal to 1 minus beta. I will call this as gt, right. So, remember the gt is

grad of w t, ok. So, now let us try to write formula for this. So, m 0, I will set it to 0. So,

m 1 is going to be 1 minus beta in to g1, ok. M2 is going to be beta into 1 minus beta into

g 1 plus 1 minus beta into g 2 and m 3 is going to be beta into 1 minus beta square g 1

plus beta into 1 minus.

Student: Beta square.

Sorry beta square.

Student: Minus beta. 

Minus beta, wait is the first term correct.

Student: Yes.

No beta, ok. So, wait what am I? Oh beta is getting multiplied, to g 2 plus 1 minus beta

into g 3. So, what is the general formula going to be? It is mt is equal to, so 1 minus beta

can come out, ok. Summation i is equal to 1 to t 1 minus beta

Student: Beta square.

Oh god sorry, beta raise to 3 minus i and gi, right ok. So, this is what my mt is, ok. Now,

let me take the expectation of this, ok. Now, this is b 1 minus beta. Now, this is going to



be is that fine. So, what is this? This is an ap gp. What is the sum going to be?

So, it is going to be 1 over 1 minus. Oh it is actually sorry 1 minus beta raise to t over 1

minus beta. Is that fine? So, what will happen is, this will get cancelled and what you are

left with this 1 minus beta raise to t into e of gt, ok. So, what is the relation that you have

E of mt, ok. E of mt is equal to 1 minus beta raise to t into E of gt. What did you actually

want?

Student: E of gt.

Right so, now how will you ensure that divide by divide mt by 1 minus beta raise to t and

that exactly the bias correction that we have done, ok. Sorry about this messy derivation,

but I guess most of you get it. If not, we will just type it properly and upload it in the

slides. How many of you got this? Most of you got, fine; so, that is the similar derivation

for vt also, fine. So, that is why we need the bias correction.


