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Welcome to lecture 5 of the course on Deep Learning. So, today we look at some
variants of gradient descent. So, we will just quickly do a recap of gradient descent and
then look at some variants of it, or some ways of improving it, which is momentum
based gradient descent, Nesterov of accelerated gradient descent, stochastic gradient

descent, AdaGrad RMSProp and Adam.

So, just to set the context. So, we started with this gradient descent algorithm for a single
sigmoid neuron, and then we saw how to extend to network of neurons with back
propagation. So, we realized that all we need is the gradients or the partial derivatives,
with respect to all the weights and biases. Once we compute that we can just use the

gradient descent update rule.

Now, today what we are going to see is, are there better update rules which lead to faster
conversion or better performance in various ways. So, that is why we are going to look at
all these different variants or methods of improving on gradient descent ok. So, that is

the context.
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I will just quickly rush through. So, for most of the lecture, I have borrowed ideas from
the videos by Ryan Harris on visualize back propagation and some content is based on
this course by Andrej Karpathy and others, when I talk about some tips for learning rate
and so on. So, you can just look at those also. So, we will just quickly rush through the

first two modules which we have already done.
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Which was, we were interested in learning the weights and biases for this very toy
network, with just 1 input and 1 output, and we started by doing something known as

guesswork where we were just trying to adjust these weights and biases by hand.
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/<> What does it mean to train the network?

I o Suppose we train the network with
(2,y) = (0.5,0.2) and (2.5,0.9)
flz)= mnl—m o At the end of training we expect to

find w*, b* such that:

o f(0.5) = 0.2 and f(2.5) = 0.9
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o Can we try to find such a w*,b* manually

0 | e Let us try a random guess.. (say, w=0.5,b=10)
425,09
i o Clearly not good, but how bad is it ?
ot A o Let us revisit 2 (w, b) to see how bad it is ..
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We want .Z(w,b) to be as close to 0 as possible
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And we realized that its clearly not good and, but we still try to do a very smart guess
work, where we were driven by this loss function, which was telling us whether this
guess, the current guess is better than the previous guess or not. And we just kept
following our guess work and try to reach to some solution, and for this toy network it

was very easy to do that.
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Let us try some other values of w, b
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Let us keep going in this direction, i.e., increase
w and decrease b
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Random search on error surface
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Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where .Z(w,b) is
minimm

But of course this becomes intract-
able once you have many more data
points and many more parameters !!
Further, even here we have plotted
the error surface only for a small
range of (w, b) [from (=6,6) and not

from (= inf, inf)]
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And what we were actually doing is, there is this error surface which exists, which can

be plotted for all possible values of w comma b.

guesswork is, trying to find path over the cellar surface, so that we enter into the better

regions. So, red is bad, blue is good; the darker the shade of blue the better. And this of

And what we were trying to do with this

course, becomes intractable when you have many parameters and so on.
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Let us look at the geometric interpretation of our
“quess work”™ algorithm in terms of this error surface
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So, we wanted to have a better way of navigating the error surface. So, this is exactly

what we were doing with the guesswork algorithm.
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The answer comes from Taylor series
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So, then this better way actually we realized that we could arrive at it from a very

principled solution from, starting from Taylor series.
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For ease of notation, let A = u, then from Taylor series, we have,

2 3 I
L0 +nmu)=ZL0)+nx HTVZ’(()) + %' * HTVQ.Z’(())H + % * .t % i
= 20)+n+uTVL0) [ is typically small, so . 0’.... = 0]

Note that the move (nu) would be favorable only if,

L0+ mi) — L (0) <0 [i.e., if the new loss is less than the previous loss]

This implies,

WVL0) <0
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And we went to this derivative, where we finally came up with this rule that move in the

direction opposite to the gradient.
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Okay, so we have,
uT'V.L(0) <0

But, what is the range of uT V.2(0) ? Let’s see....
Let A be the angle between u” and V.2(6), then we know that,

uW"VZ(6)
—1<eos(f) = e S
0= sz <

Multiply throughout by & = |[u]| ¥ || V.Z(0)]|
—k<kxcos(f) =uTVLW) <k

Thus, Z(0 +mu) — Z(0) = ul'V.L(8) = k + cos(3) will be most negative when
cos(f) = =1 d.e., when 3 is 180°
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Gradient Descent Rule
o The direction u that we intend to move in should be at 180° w.r.t. the gradient

o In other words, move in a direction opposite to the gradient

Parameter Update Equations

Wiy1 = wy — nVwy

bipt = b = Vi

07 (w.bh) 0% (w,bh)

b atw=wib=b

where, Vwy =

ow  atw= u'z.b:bzl‘

So we now have a more principled way of moving in the w-b plane than our “eness
work” algorithm
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So, that is the rule that we have been sticking to since then. And we also along the way
realize some of these things which we defined carefully which was, what is, what exactly
this quantity means, which is the partial derivative with respect to w evaluated at a
particular weight comma bias configuration. And because this is an iterative process, you

are at a certain value of weight and bias and you need to change it from there.
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o Let’s create an algorithm from this rule ...

Algorithm 1: gradient descent()

t 0
max_iterations < 1000;
while ¢ < max iterations do
Wit  wy — NV
by by =V
end

o To see this algorithm in practice let us fivst derive Vi and Vb for our toy neural

network
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And we then created an algorithm out of this and when we ran this, we actually derived

the full derivative and so on.
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Gradient descent on the error surface

np.exp( (wx - b)))

-
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def grad_b(s : _420 10
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def grad w(w,b,x,
fx - f(w,b,x)
(fx -~ y) * fx

def do gradient descent() : ’
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grad w(w, b, x, y)
grad b(w, b, x, y)
WowWooeta dw
b=b eta db
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And then when we finally, ran this algorithm. So, this is where, now I will slow down.
So, when we ran this algorithm. So, let us see what was happening here right. So, I will

just start the algorithm from the beginning.

So, we are now going to run this code and you tell me something that you observe ok.

So, I am just clicking. So, there is no change in the phase at which I am clicking this



right. So, every click of this is one time step and I am just continuously clicking this I

will start now, do you observe something [FL] ok. Do you observe something?

It was initially slow then suddenly picked up and then it again became slow. Why did
this happen? The slope is small why ok. How many of you completely understand why
this slow and fast moment was there, please raise your hands good. So, that is what we

will focus on now right. So, we will try to see this.

(Refer Slide Time: 04:30)

Y o When the curve is steep the gradient
: 5 . A .
6 ’f(z) =g+ 1‘ (A_(z“l) is large
o When the curve is gentle the gradient
5 Bu2) 56 sme
D / (A“) is small
/ o Recall that our weight updates are
4 / proportional to the gradient w = w -
Ay, nVuw
3 / o Hence in the areas where the curve is
Az gentle the updates are small whereas
2 i in the arcas where the curve is steep
Ay the updates are large
. E
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So, we will, I hope this has been fixed ok. So, let us take a simple function which is f of
x equal to x square plus 1 right, this is how it will look like. Now in these portions of the
curve, the curve is actually very steep right and in these portions the curve is a bit gentle

and of course, it becomes very gentle over here right. All of you can see the pen marks

properly.

So, now let us see what this means; this steep and fast and small. So, let us look at a
region which is steep ok. Now what I am going to do is, I am going to change my x by 1,
I move my x from 1 to 2. How much did my y change. All you need to do is just
substitute in this formula right for 2 it evaluates to 5, for 1 it evaluates to 2. So, when you
move from 1 to 2, your function changed from 2 to 5. So, there is a large change in the

function for 1 unit change in your value of x, everyone sees that.



Now, let me do the same at a gentle portion of the curve, I will do it here. Now when |
changed the x by 1 unit, again 1 unit right, it is the same change which I did earlier. I

changed from zero to 1, how much did my y change.
Student: 1.

1. Now actually what is this quantity; delta y 1 by delta x 1.
Student: Slope.

It is the slope, it is the derivative at that point. So, what are you inferring from this. What

happens to the derivative when you are at steep slopes.
Student: It is high.

Derivative is high, because the change in y is much faster than the change in x. What

happens to the derivative when you are at the gentle slopes.
Student: Smaller.

Smaller, because the change in y is small or relatively smaller as compared to the change
in x or it could also missing, but just these two are relatively different, is what I am
trying to impress upon right. And so; that means, the derivatives at the steep slopes are

larger in magnitude, whereas, for the gentle slopes they are smaller in magnitude.

Now, can you relate it to the observation that you had on the previous slide. When we

were at the plateau it was a very dash slope, gentle slope what would the derivatives be
Student: Small.

Small now what are our updates, you have w is equal to w minus the derivative. Now the

derivative is small what will happen to the updates.
Student: Small.
They will be small. What would happen if the derivative is large.

Student: The updates would be large.



The updates would be large. Therefore, in the gentle areas you are moving slowly and in
the steep areas you are moving fast ok. You get this picture very clearly. Now this is
going to be the basis of a lot of things that we do today. So, it is very essential to that you
understand this perfectly ok. All of you get this properly; good
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o Let’s see what happens when we start from a differ-
ent point
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Now, now you might say that this was only that special point again and I always get

those questions. So, let us see what happens, if you start from a different point.
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o Irrespective of where we start from
once we hit a surface which has a
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So, now again the same gradient descent algorithm I am going to run, but instead of
starting at this point which was my random initialization, I just happened to choose a

very different random initialization which is here ok, everyone sees that ok

Now, let us see what happens, what do you expect initially fast movement, because the
steep, the slope is a bit steep. Now what would happen? It will become slow because you
have entered a gentle slope region and then again fast right. So, and then again it will

become slow

So, see in this gentle region right, the changes in w are so small that all your black points
are actually indistinguishable from each other, it is almost like a snakes body whereas, in
these steep slopes, you can see a large change in the w. You can see gaps between the
values of w. So, this is irrespective of where you start from. Gentle means slow

movement, steep means fast movement that is the basis.



