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Back Propagation: Pseudo Code

So, we move on to the next module and now we will write Pseudo Code to for back

propagation. And pay attention this is what your assignment is about. So, this is how you

will write your assignment, ok.

(Refer Slide Time: 00:23)

So, we have all the pieces of the puzzle, we have the gradients with respect to the output

layer, that was the spatial layer because, the output activation function is different. They

are the gradients with respect to all the hidden layers; that means, I have the gradients

with respect to the activations as well as the pre activation.

So, in the h’s as well as the a’s and I also have the gradients with respect to the weights

and the biases and this is all index agnostic right; that means, I am just using k as the

index everywhere, I have a generic formula, which applies at any layer for the weights as

well as the activations and the pre activations right ok. Now, we can put all this together

into a full learning algorithm. So, let us see what the pseudo code looks like.



(Refer Slide Time: 01:03)

So, we have this t equal to 0 well run this for some max iterations we initialize all the

parameters  to  some  quantity  will  randomly  initialize  them  ok.  Now, for  these  max

iterations,  can you tell  me what is  the first  thing that  I  will  do? So, there will  be 2

functions here ok. Tell me what those 2 functions would be.

Student: Forward.

Forward  propagation  and  then  backward  propagation  right.  So,  you  do  a  forward

propagation  and  you  compute  all  these  activations  pre  activations  output  layer  loss

everything right and then you do this backward propagation where you feed all these

things  which  you  have  computed  right.  These  are  the  quantities  which  you  have

computed; you will pass this to your backward propagation algorithm it would not look.

So, nasty as this it will not take. So, many parameters you could write it smartly and then

you will just do the parameter update right.

So, what will  the back propagation give you actually  all  the gradients  all  the partial

derivatives  right  and  then  once  you  have  the  partial  derivatives,  you  know how  to

compute the update law. Is this clear? So, now, let us look at these 2 functions more

carefully the forward propagation and the backward propagation, ok.



(Refer Slide Time: 02:09)

So, forward propagation is simple for all the hidden layers; that means, from layer 1 to

layer l minus 1 what will I do give me the code a k is equal to good then ok. And what it

what is h of 0 you are starting the loop from 1 right. So, you will need h of 0 that is x and

then you will have a special treatment for the output layer and your final output will be

whatever output function you use ok. This makes sense you can write this in python ok.

You will have to write this in python, ok.

(Refer Slide Time: 02:45)

 



Ah Now we have computed all the h’s and the a’s what have we computed all the a’s, all

the  h’s  and  all  and  the  Y, right  now  you  want  to  do  back  propagation.  So,  back

propagation the loop will be from i equal to 1 to n minus 1 good. So, the first thing I will

compute is the gradient with respect to the output layer. See, even here the output layer

was outside the loop. The same thing would happen here also. In the back propagation

also first you will compute the gradient with respect to the output layer and this is the

formula.

If you remember from last class right, that is the formula which I have substitute here

and note that f of x is known to you because you computed that in the forward pass and

of y what is e of i y 1 hot vector which with a correct label said to 1 and you know what

the correct label is because, we have given you the (Refer Time: 03:14) data right ok then

what would the loop be l to 1 or l minus 1. Let us see first you compute the gradients

with respect to parameters ok, ok. It is l, correct.

So, because, we are using k minus 1, then you compute the gradients with respect to the

layer below computes gradients with respect to the pre activation right. This is exactly

how you will proceed this. Is clear to everyone? The same 3 components that we have

used you might be a bit confused about the ordering in which we have put them right

because  we computed  the  gradients  with  respect  to  pre  activation  first  and then  the

weights, but once you go back, you will realize because it is the way we have indexed it

right because this is already outside.

So, this has already been computed.  So, you can already compute the gradients with

respect to the weights of the outermost layer, is that fine? So, this is straightforward you

can go back and check this now anything remaining, or you have everything can you just

take a minute and see if you can visualize the python code and we will just assume that

you are done the assignment  you can read you will  have multiple  these vectors and

matrices and so on. And you are just doing a lot of matrix operations using (Refer Time:

04:06) or (Refer Time: 04:08) or whatever you prefer right, is that clear? Ok.

Now, what is missing here? Input is missing, ok. Input we have given right. The ominous

data set has been given is there something that yours I have still not shown you how to

compute; oh I did not update the parameters here is it? No the parameter update will

happen in the outer loop, right. So, those forward prob back prob and then update the



parameters  right.  So,  the  main  algorithm  was  forward  prop  back  prob  update  the

parameters, when we saw forward prob an obvious seeing backward prob, ok. So, what

is missing 1000 iterations? Something in the last line before end of course, do you know

how to compute this? You know how to compute this.


