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Before we move on to the next moduler, a quick summary of what we have done so far.

So, we introduced feed forward neural networks, and we wanted to learn the parameters

right from the last layer to the first layer. And we figured out that what we can do is that

we can just use the gradient descent algorithm as it is; except that, we have this small

problem that we have so many parameters now, and located at differ different points in

the  network,  right  some at  the  initial  layer  some at  the final  year,  and you want  to

compute the derivatives or the partial derivatives with respect to all of these.

If you can do that, put them all in this large matrix, then we can just use gradient descent

as it is wait so, that is what we figured out. And then we wanted to find out the gradients

with respect to or the partial derivatives with respect to all these parameters. So, then we

realize that this can be done using chain rule, because there is a path from your output

which is the loss function to any of these weights. So we just need to follow that path and

apply this smart this chain rule smartly and just some of the derivatives across all the



paths that lead to that weight, ok. So, in that process we started from the output layer, we

just treated it a bit special, because the output function is special and this is the last layer.

So, we just first computed the gradient with respect to the output layers, then we figured

out how to compute the gradients with respect to any of the hidden layers. And now if

you are at a particular hidden layer, now the weights that feed into this layer we could or

we have not reached there right, oh sorry.

So now, the next thing that we need to do is that we have computed the gradients with

respect to any of these hidden layers, and now we want to find the gradients with respect

to the parameters which is the weights and the biases. So, it is the do you all remember

this, or it is all long history or the story is back right, fine. So now, we are at the last

point which is computing gradients with respect to parameters, clear?
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So, again this is the overall picture, we were in this chain rule, and we have come all the

way to the last point where we are ready to now compute these quantities. Ok this should

ok, ok. So now start by recalling that a k is equal to b k plus w k h k minus 1, right, this

is our activation formula, pre activation formula right. So, I am talking about these light

blue guys, ok, which is clear in image.

And now I what have I done so far? I have been able to come up with a formula to write

the gradient of the loss function with respect to any of these light green guys, right, that

is what where we ended last time right, where we are able to compute the gradients with

respect to the, sorry light blue guys ok,. And now I want to compute the gradient with

respect to any of these parameters or any of these parameters, right.

So, any parameter, it does not matter am at some ith activation layer, pre activation layer,

and I just want to compute the gradients with respect to the weights which feed into this

layer, ok, and that is what we are interested in. So we are just taking any layer k, and you

want to find the gradient with respect to the weights there, ok, now can you tell me? So,

can you tell me what is what is the thing that am going to do here? Or what is the recipe

that we have been following?

I need to move, what is the recipe that we have been following? Apart from yelling at

people who come late, we find the element wise partial derivatives first and then put

them all together to get the gradient ok, what is the element here? What is what am I

looking for right now? I want to compute this fill this blank, what goes here?



Student: W.

W any of these W is right? And in particular say W k that is what I am looking for. So

what is the first thing that am going to attack?

Student: Wkij.

Good. W k i j and once I have this for one of these guys i just know a generic formula

with respect to i j and k and I can just put it into a gradient vector ok, is that fine? Ok so

now can you, ok, now from here to here if I want to reach from here to here. So, this is

what i am interested in, right? Now how is the chain rule going to look on, look like

based on whatever you have already seen? Till where have you already reached? You

already know this quantity, right? Now if I want this how am I going to write it?

Student: (Refer Time: 04:59).

I will find up to the light blue guys; which is this I already know how to compute it, and

then from the light blue guys I will go to the this; is fine right? So, this is the quantity

that i am looking for, ok. Now what is one element of this guy? Dou a k by; is it fine? Ok

what is the dimension of this actually? Is it a scalar, a vector, a matrix, matrix or a tensor,

what is the tensor? What is it? Is it a matrix? What are the dimensions? What does this

derivative mean? Or this gradient mean? I change one element of W k how much does

one element of a k change? How many elements are there in ak? n, how many elements

are there in W k? n cross n. So, how many partial derivatives which I have? n cross n

cross n, what is this?

Student: Tensor.

A tensor, right? So, this is going to be a tensor, ok. So, when I say one element of this, I

mean this ok.  So, this  is  one element  of this  gradient,  ok. Now can you tell  me the

formula for this? What is this quantity? Hk minus.

Student: 1 (Refer Time: 06:27).

Hk minus 1 or hk minus 1 j or?

Student: (Refer Time: 06:31).



Everyone gets this hk minus 1i. How many of you get this? Ok.

(Refer Slide Time: 06:38)

So, let us do it, right? So you have ak1, ak2, ak3 that is your ak vector, ok. You have bk1,

bk2, bk3 plus wk1 1, yeah, I know again this is one of those silly things, but if everyone

does not raise their hands and compelled to do this; so, h k minus 1 1 hk minus 1 2 hk

minus 1 3 ok. So, let us take one of these guys right. So, a k 1 can you tell me the

formula for that?

Student: (Refer Time: 07:30).

Plus, first row ok, 1 2 this 1 3, now can you tell me this quantity? So, what is i here? 1

so, i want this by w k i j right so, i is 1 so, i can take any of the j. So, let me take j equal

to 2. So, what is it going to be? This will go off this is constant, this is constant only this

term remains, and the derivative is hk minus 1 2 which is j right. So, that is what the

formula says. So, I have a formula for one of these guys, and that is a generic formula.

So, always remember if you cannot figure out what it  is just write it down in scalar

terms, just add up all the terms and you will get the formula, right. So now this is what

the chain rule is going to be? Is this fine? Ok.



(Refer Slide Time: 08:37)

So, this is what it is going to be. This is one element of that tensor ok, is this fine? This is

how that entire thing is going to look, I have just flattened it out and put it here.

(Refer Slide Time: 09:05)

Now let us take a Simple example of wk belonging to r cross ah; 3 cross 3 everyone is

fine so far right or anyone who everyone is fine please raise your hands. i mean fine i

mean not in life, but with the lecture fine , ok. So, this is what it looks like right for a 3

cross 3 matrix, fine.



Now, let us see we already found out that this guy is equal to hk minus 1 comma j right.

So, this is what this matrix looks like, nothing rocket science here right. So, each of these

quantities is actually can be written in this form; where i appropriately substitute I k and

j. And I know that this quantity can be further written as this quantity, right? That this is

our clear rate so, I have written it as this. 

Now can you simplify this, I do use a lot of this ok, can you simplify it? Is it looks

similar to something that you did on the assignment. Does this look like matrix which

has some very regular patterns? Yeah I can see someone doing this, and this everyone

gets it, ok.

(Refer Slide Time: 10:28)

So  let  us  see  so  this  the  first  column,  the  second  term  in  the  product  is  all  same

throughout all the rows, right? What I mean is all these guys are similar, same thing

happens in the second row the third row, right ah? That is sorry the second column and

the third column. What about the rows? These are all equal right, so what does this look

like actually? The outer product of 2 vectors, everyone gets this? Raise your hands? Ok

good.

So, I do not need to do an example. So, it is fine right this is an outer product of these 2

vectors, one happens to the quantity to be the quantity that we already knew, right? And

the other happens to be a quantity that we can figure out. I mean we already know this,



what is we know how to compute the hidden representations, right? The edge case we

can compute ok.
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So, fine so, finally, we come to the biases.  This is what one entry looks like,  this is

exactly the sum which I had written out, right. Now I take the derivative with respect to b

k i of the loss function. So, I could write it into as this chain rule; where the first quantity

is  something  I  already  know I  have  computed  the  gradient  with  respect  to  the  pre

activation  layers  what  about  the  second  quantity?  Anonymous  roar  is  what  I  was

expecting.

Student: 1.

1 ok, fine, we can now write the gradient with respect to the bias, what would it be?

What is this? What is this? It is just the gradient with respect to the pre activation layer,

right simple, fine. So now, we are done with all the gradients that we were interested in,

right?


