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Backpropagation: Computing Gradients w. r. t. the Output Units

Now, we go to the next module where we will first see how to Compute the Gradient

with respect to the Output Units, well that was the first guy in our chain right that is the

first person that we need to talk to ok.

(Refer Slide Time: 00:23)

So, that is the part that we are going to focus on.



(Refer Slide Time: 00:26)

So, this is the output and when I say I want to compute the gradient with respect to

output unit, what do you actually mean; what is the quantity that I am looking for? I will

help you out, actually what I meant by output unit is this entire thing right. So, I actually

meant aLs ok, but it is it is a fair answer and even y hat is a fair answer ok. In fact, am

going to start with y hat and then go to here. So, I will have to start with this guy and

then come to this guy right.

(Refer Slide Time: 00:54)



So, this is the loss, this is y hat which is equal to y 1 hat, y 2 hat up to yk hat. So, these

are the k values that we have here and we are looking at cross entropy; that means, we

are looking at the classification problem, right? So, we have got a distribution over the k

classes; that is what y hat looks like. And we know that one of these guys is the right

class maybe say y 2. So, the loss function is minus log of y hat 2, because 2 is the correct

class  in  this  toy  example  that  I  am considering  ok.  So,  the  loss  function  I  am just

repeating the definition right that is how the loss function is ok.

(Refer Slide Time: 01:30)

Now, oh god so again this is what our y hat looks like ok. Now I want to compute the

gradient with respect to any of the output units right. So, it could be y 1, y 2, y 3, y 4 up

to yk right. So, this i actually can take values from 1 to k, in this case 1 to 2 right ok.

Now can you tell me what is this loss? Ok this much is fine; can you tell me what is this

derivative? Minus 1 by minus 1 by y hat L if y is equal to L.

Student: (Refer Time: 02:08).

And 0 otherwise, how many of you get that? Cool ok, so it is a very simple thing that you

can think of this as z and this is y, only if z is equal to y then the derivative would exist

otherwise it is going to be 0 right ok. So, how do I write this fe part using?

Student: (Refer Time: 02:27).



How many of you have seen indicator variables before good? So, this is what you are

telling me right, it is going to be minus 1 by y hat l, if i is equal to l ok. And if i is not

equal to l, then these 2 things are not related, it this is a function of something else and

you are taking a derivative with respect to a different quantity. 

So, it is a constant with respect to that constant e and the answer would be 0 ok. Now I

am going to write this as this right. So, this is the same as saying so this variable actually

this is known as the indicator variable, it takes on the value 1. If the condition in the

bracket holds, otherwise it takes on the value 0. So, this is exactly I am writing exactly

this, but in a more compact manner ok, is that clear to everyone? Ok.

(Refer Slide Time: 03:15)

So, this is what the quantity this is the quantity, that we have computed with respect to

one of the output units ok. So, this is what; derivative, partial derivative gradient, how

many of you say derivative? No one likes derivative; partial derivative? That is always

the safest choice partially [FL] right and gradient oh; there is one brave soul who say is

gradient do not worry well fix that ok.

So, this is the partial derivative y because my y hat is actually a vector, and I am taking

the derivative with respect to one of those guys ok. Now if I want the gradient with

respect to y hat, what would that look like? A vector which is a collection of?

Student: (Refer Time: 04:01).



Partial  derivatives  ok.  So,  let  us  see  this  is  the  quantity  that  I  am interested  in  am

interested  in  the  gradient  of  the  loss  function  with  respect  to  the  vector  y  hat.  So,

remember the vector y hat is y 1 hat y 2 hat up to yk hat, right? So, this gradient is going

to be a collection of the partial derivatives with respect to y 1 hat y 2 hat and so on right

ok.

Now, what is each of these quantities, how many of you are fine with this? How many of

you not fine in this? I did not see as many hands that has going to play ok, how many

were fine with it again please raise your hands? Up up up fine ah, is this right? So, it is

simple right, so this quantity the derivative is either going to be 0 or is it going to it is

going to be 1 by y 1 hat, right? If l is equal to 1 right? And that is exactly what I have

done. So now, how many elements here are actually going to be nonzero? At a time how

many of these going to be nonzero? 1, which one?

Student: (Refer Time: 05:04).

The 1 corresponding to l, right? Everything else is going to be 0. So, this is a dash vector

y not vector ok. So now, am going to write 1 hot vector like this, what have we done? Ok

where el is what 1 hot vector, such that; it is l th entry is 1 ok, that is what am going that

is how am going to define e l, is that fine with everyone ok? 

And so, you see the story how did how we went about computing this. We started with a

partial derivative with respect to 1 of t guys right we found a formula for y i; we saw that

this formula is generic enough. And So now, we can compute the gradient which is a

collective of all these yis where i ranges from 1 to k, right? And then we just put that in a

gradient vector.

So, this  story is  going to repeat  throughout the lecture where we try to compute the

gradient  with respect  to  1 guy and then generalize  oh sorry, we compute  the partial

derivative with respect to 1 guy and then generalize and try to find the gradient fine ok.



(Refer Slide Time: 06:18)

(Refer Slide Time: 06:19)

.

So, what if I what do I have so far? I have this quantity. What does till which part of the

diagram am I currently? The dash green part dark green part I am till, here I need to go

till the light green party that is collectively the output unit ok. Although I have divided

into 2 halves, but when I say output unit I mean that output neuron right complete neuron

ok. So, what I am actually interested in is these quantities all more specifically ok. This

is what I am interested in, what is this? One of those guys right this aL is actually a l 1 up

to aL k right. So, this is one of those guys; so, this is going to be the gradient or this is



going to be the derivative, a partial derivative sorry ok, now what do how do we proceed

from here ok?

(Refer Slide Time: 07:26)

Now, I will again have to compute this, you already know that good, but before that I

want you to answer one question right. So, y hat l ok, what is y hat l? It is the output

corresponding  to  the  correct  class,  does  it  depend  on  an  arbitrary  aL i?  So,  in  the

previous thing we saw that only when i is equal to l there is a connection. In this case is

there a connection always or only when i is equal to l.

Student: (Refer Time: 08:02).

Always why? Softmax so? 

Student: (Refer Time: 08:04). 

Denominator has all  the aLis right.  So, this is there it  is y hat l  in the numerator of

course, it only has this unit which corresponds to the l th probably did not choose my

variables very well. So, l th component of a capital L right? And but in the denominator

you have the entire sum which means; that every output guy here; each of these dark

green guys depends on each of the dash green guys light green guys good. 



So,  that  is  at  least  settled  that  we  always  the  we  can  always  compute  this  partial

derivative, we do not need an if else here there is no thing like l is equal to i then what

will happen it will always have this partial derivative is that clear to everyone ok?

(Refer Slide Time: 08:53)

So, we will now derive the full expression for this. So, this is what we are interested in is

this fine; so this is a function of the form; so you are taking how do I say this. So, this is

log of a function. So, first you will take the derivative with respect to log and then push

the partial  derivative inside right. So, that would be minus 1 by y hat l and then the

derivative with respect to y hat l ok. Now what is y hat l? The softmax function right. 

So, it is the l th entry of the softmax function applied to that output vector what is the

output vector? aL right. So, it is the l th entry of the softmax or l th entry of the function

applied  to  the  output  vector  is  that  fine?  Everyone  gets  this?  I  do  not  see  a  lot  of

thoughtful nodding right.

So, this was our aL what is our output; right? So now, one of these guys here is the l th

guy and one of these guys here is the l th guy right. So, what you do is; you take this you

apply  the  softmax  function  to  it  which  again  gives  you  a  vector  and  now  you  are

interested in the l th component of that vector that is what this quantity means, it should

be clear.



(Refer Slide Time: 10:25)

Now, now I will just do some simple math stuff here and we should be able to derive

this, is it fine am just replaced by the actual softmax formula? This is a derivative of the

form u by v right, what is the formula for that? Yeah it perfectly right yeah. So, this is

what it would be right, I mean it is you all know this I am not going to spend time on this

right.

So now am just going to substitute the values here, yeah it is getting a bit nasty, but it is

not very difficult right. So, so this so this is our g of x so, am taking the derivative of that

then this is this 1 over h of x, you can just figure it out right anyway it everyone just read

this for a few seconds and let me know if this is not clear. This is g this is h in this

formula right have just substituted the gs and hs in the, how many of you get this? Ok,

how many if you are still struggling? Ok not ok, if this is clear then the rest of it should

be fine. Now what is this quantity going to be? It is derivative of the form e raise to x

right so it is e raise to x always.

Student: (Refer Time: 11:33).

If i is equal to l right; so now we have this dependence because we are looking at a

numerator, but the numerator only depends on the l th entry right. So now, you are trying

to take the derivative of the l th entry with respect to some arbitrary i th entry. So, only if

l is equal to i you will get the derivative right.



(Refer Slide Time: 11:52)

So, that is this correct, ok?

Now, what about this; how many terms in the summation would remain?

Student: (Refer Time: 12:02).

1, which one?

Student: (Refer Time: 12:04).

Where  i  dash  is  equal  to  i  right.  So,  the  i  th  guy  would  remain  the  rest  of  it  is

straightforward right. This square I have just divided into 2 parts ah, now let us see; can

you simplify this? Because I cannot ok, can you simplify this? What is this?

Student: Softmax.

Softmax and which entry of the softmax?

Student: (Refer time: 12:36).

L th entry, i th entry, l th entry with the saw with the indicator variable ok, but what is

this? This is our input hidden layer output ok. So, now let us see, what is the next step?

Ok this is should have been y hat i, but y hat is equal to f of x right. So, we can fix this

unit. So, fine so we have actually what do we have now? We have the derivative of the



loss function with respect to the i th unit of the output layer, right? And which part of the

output layer? The pre activation pattern ok, now what am I going to do? I have a formula

which tells me how to compute this, what was I actually interested in? So now, how am I

going to go from here to there? I just put all the partial derivatives into a.

Student: Vector.

Vector, and that vector is the?

Student: (Refer Time: 13:58).

Gradient good.

(Refer Slide Time: 14:00)

So, we have this one formula it is ok, if some of you did not get this derivation right, it is

very, very straightforward. If you go back and look at it I am pretty sure you will get it is

nothing in this is, very simple elementary stuff right, except for some degree here and

there. So, now what would this look like? 

We should add actually l theta here, this would look like a collection of all the partial

derivatives. We have a generic formula, what will we do now? What is the first entry?

Minus in indicator l equal to 1 minus y hat 1. Which is the variable that we are indexing

over i right not l, oh god oh we are indexing or ok, have I goofed up oh that is wrong, is



it oh yeah that is wrong fine. Ok then this is fine we are indexing over I and then we can

do this.

Now, can you simplify this? I am looking for this is the element wise difference of 2.

Student: (Refer Time: 15:38).

Of the indicator vector and.

Student: y hat.

(Refer Slide Time: 15:44)

Y hat, oh hey we should change all this, y hat is equal to f of x right, but I just want it to

be consistent as y hat. So, is this fine this is a simplification fine, right? So, we have

come a long way right you have finish this  part  ok,  we have got  the gradients  with

respect to the output units ok. This much part is a clear to everyone moduler bit of the

math which you can go back and look at it this entire derivation is fine, but you get the

concept right that we start with one unit from there grow the gradient then keep going

applying the chain rule right.

So, we started with the dark green guys and then went to the light green guys ok. Now

we have the derivative with respect to the entire light green vector ok. And that is what

we had started off with that we wanted the gradient with respect to the output units ok.

So, that is where will end that module.


