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Representation Power of a Multilayer Network of Sigmoid Neurons

So, before we move on to the next modulate some small corrections from yesterday’s

class.

(Refer Slide Time: 00:13)

So, one was this partial  derivative it should have been dou w square. So, we already

taken one derivative with respect to w and now you are taking another derivative it is the

gradient of the gradient, right. And similarly should this should have been dou b square,

and this should have been dou w dou b, ok.



(Refer Slide Time: 00:43)

The  other  small  thing  which  I  wanted  to  say  was  so,  when  I  was  executing  this

algorithm, right. So, I forgot to mention that just notice what is happening is the black

dot that you see the black dots that you see, right and which are very close to each other.

Actually, because you are just making small small movements those are the changes in

the w comma b values and the red dots are the corresponding loss to that w comma b

values right, just to clarify, ok.

So, that is why you see a movement on the w b plane which is this movement and as you

keep changing that your loss function changes and it becomes better and better right; that

means, it goes closer to 0.



(Refer Slide Time: 01:25)

So, in this module we are going to talk about the representation power of a multilayer

network of sigmoid noodles, right. So, I am going to compare these two things which are

writ10 in the title. So, first tell me; what was the representation power of a multilayer

network of perceptrons. I roughly hear what you are saying and basically what you are

telling me is that a multilayer of network of perceptrons with a single hidden layer can be

used to represent any Boolean function precisely, right. No errors that is; what we saw

with that illustrative proof where we actually constructed once its network.

Now, what is the representation power of a multilayer network of sigmoid neurons? So,

multilayer network of neurons with a single hidden layer can be used to approximate, ok.

So, just see the difference in the language right. So, this was a represent; that means,

exactly  this  is  approximate;  that  means  I  will  tolerate  some  error,  any  continuous

function instead of Boolean function to any desired precision, right. So, this was not this

was precisely with no errors this is up to any arbitrary desired precision.

So, what does this mean, actually what is the meaning of this? So, there is a guarantee

that for any function, which takes our original x from R n to R m what is the m that we

have been considering in all our examples one right we just care about one output, but it

can be R m also. We can always find a neural network with one hidden layer containing

enough neurons right. So, that is the operating trace here enough neurons whose output g

of x, so, that means, you would have a network it  would take as input n x it  would



produce some y hat and that is what I am calling as g of x, right, that g of x would be

very close to the true function f of x, right.

So, remember that we said that there is this true function f of x which gives us the true

y’s and we are trying to predict this y hat. So, the true why I am calling by f of x and the

y hat I am calling by g of x and you can come up with a neural network which can give

you values which can predict values which are very close to your true values, right. Does

that make sense? Do you see the value of this theorem, what is it trying to tell me? Tell

me, can you can you give me an interpretation of this? Why is this so useful? Do you

know what this theorem is called universal approximations here and we did that in the

history, right.

(Refer Slide Time: 03:57)

So, this was 1989, ok. What is the significance of this? Why do we care about such

arbitrary functions and what does this theorem telling us actually? It is of course, telling

us  something  about  the  representation  power  of  a  multi  layer  network  of  sigmoid

neurons, but why is this important, ok. So, we will see that.



(Refer Slide Time: 04:26)

So, this the remainder of the lecture I have borrowed ideas from this  URL you should

actually  read  this  it  is  a  very  interesting  book  it  is  available  online  for  free  very

illustrative. So, please take a look at it, ok.

(Refer Slide Time: 04:41)

So, now actually what we are interested in is we are interested in knowing whether a

network of neurons can be used to represent any arbitrary function like the one shown in

the figure, ok. So, let me put some labels on this, so, they understand what I am trying to

say. Suppose, this is salinity, again I go back to my oil mining example and I say that my



decisions are based only on a single variable which is salinity and this is actually how the

amount of oil varies right as the salinity. It is a very arbitrary function, it is definitely not

a linear function, it is not even a quadratic function, it is not an exponential function, it is

just some arbitrary function, but a mathematical function this is possible. It is quite likely

that salinities has this influence or in oil production or maybe it does not, but I am just

taking that as an example, right.

Now, what do we want the network to learn? If I take some data and train the network at

the end of training, what do I want? So, if I feed at this point after training, what should

happen? It should give me this value, right that is what training means and that means, I

should be able to approximate this curve, right, if I do that that means, I have learned

from the training data, ok. So, let us see.

(Refer Slide Time: 06:00)

Now,  we  make  an  observation  that  such  an  arbitrary  function  can  actually  be

approximated by a lot of something that we call as tower functions, ok. These are all

single I mean pulse functions which you have many of these, and you could have an

approximation right and you can see that this approximation is bad at many places, right,

but still it is an approximation it largely gives you the same shape as the original curve.

What would happen if I increase the number of such tower functions?



(Refer Slide Time: 06:31)

Student: (Refer Time: 06:29).

The approximation would improve, right. If I keep increasing it the approximation would

go more and more better, right. So, now, just try to keep things in mind whether I write in

the theorem, right you can make it arbitrarily close to the actual value; that means, you

can keep doing something. So, that your approximation becomes better and better and

you already see something of that sort. This is still in the sense of a figure, we need to

relate this back to a neural network, but you see that as I am increasing these tower

functions I become aprox arbitrarily close to the actual function, ok.



(Refer Slide Time: 07:05)

Now, this is what is actually happening right I have multiple such tower functions I am

adding them up all of them are shifted in time rate. So, this tower function is actually this

one this tower function is actually this one and so on, right and I have not drawn the

remaining ones I am taking all of these tower functions adding them up and getting my

original  function,  right  and  the  more  such  tower  functions  have  the  better  is  the

approximation. How many of you are perfectly fine with this? Ok good.

(Refer Slide Time: 07:35)



Now, you make a few observations right all these tower functions are actually the same

what is the only difference they just shifted and their magnitude changes right, but they

are all tower function right. So, let us think of this that if I know how to make a rectangle

then I can make any rectangle, right. I just need to change the size of the rectangle and

maybe shift it or oriented differently or something, right. So, they are all similar I just

need to learn how to draw a tower right that is what my quest is.

Now, if I take the original input salinity pass it through multiple such blocks each block

is capable of making a tower function and each of these would give me one of these

towers that I am looking for and I am looking for so, many of these, right. If I have as

many such tower makers then I could get these towers I could just add them up, and then

get  the  original  function  back,  right.  And  the  more  these  I  have  the  better  is  my

approximation, right. So, I am taking as input the salinity and trying to predict the oil

does this make sense, ok. Still we have not figured out a neural network way of doing

this we are still building intuitions of how to do this, ok.

Now, our job now is to figure out what goes in this black box that is the tower maker and

how does it connect to needle networks, if you figure that out then our story is complete.

Then we know that a neural network can actually do this and that precisely proves the

statement which I had made that it can it can represent arbitrary functions, alright. So, we

will figure this out over the next few slides.

(Refer Slide Time: 09:12)



Now, if you take the logistic function and set w to w to a very high value, what will we

get? Just try to think about it. The answer is already written, but I want you to imagine it.

W covers what?

Student: (Refer Time: 09:31).

The slope, right; as I make w very high what will happen is I will get the. So, let us try

changing the value of w, ok. I just increase the value of w and see what happens to the

sigmoid curve.

(Refer Slide Time: 09:47)

Some error here, actually there is some problem the w value should have increased and

that is how the sigmoid slope increases not the b value the b value comes later on, ok. So,

actually sorry about this, the w value as I keep increasing. So, do not think that b is

increasing think that the w is increasing. It will become sharper and sharper and it will

come very close to the step function, right. It will not become exactly the step function

that will only become in the limit, but if I keep increasing I will get very close to the step

function everyone agrees with this, ok.

Now, what happens if I increase the value of b, it will shift everyone is confident about

that, can you tell me why?

Student: (Refer Time: 10:34).



What will shift actually; the point at which the transition happens, right. So, what is this

point actually?

Student: (Refer Time: 10:43).

This is the point at which I get that half value, right and let us look at our function, this is

a function. When will I get that half value? When w x plus b is?

Student: 0.

0, right. So, that means, x equal to minus b by w, that is why it is proportional to b. So, as

I keep increasing the value of b, this will keep shifting, ok. Is that fine everyone with

this?

(Refer Slide Time: 11:16)

Now, what if I take two such modified sigmoid functions which are shifted differently

and both are very close to the step function, right. So, here is where one threshold is, here

is where the other threshold is and now I subtract this one function from the other, what

will I get?

Student: (Refer Time: 11:35).

You know the term.

Student: Tower.



You will get a tower, right. Is that fine, everyone gets this, right? So, these places up to

this point both are 0. So, 0 minus 0 will be 0, at this for this small range this is 1 and this

is 0. So, that 1 minus 0 and then afterwards both are 1. So, 1 minus 1 would be 0. So, you

get that tower function, ok. So, now I have my tower maker, ok.

(Refer Slide Time: 12:05)

Now, can  we  come  up  with  a  neural  network  to  represent  this  operation?  I  want  a

sigmoid neuron, I was working with a sigmoid neuron with some arbitrary weights, right,

so that I recover that step function, can you imagine? Now, given x, I want this tower

function and that is exactly what one of the blocks was, right. So, what I am asking you

is oh god,. So, I am asking you to give me a neural network for this. Can you think of it?

Can you try imagining it?

Student: (Refer Time: 12:46).

Sorry?

Student: (Refer Time: 12:48).

Two neurons in the hidden layer; how many of you agree with that? Ok, can you can you

take some more time to imagine what it would be?

Student: (Refer Time: 13:00).

And I have already, right.



(Refer Slide Time: 13:07)

So, this w 1, b 1 if I set it appropriately I will get this step function. If this w 2 b 2, I set it

appropriately I will get this step function. Now, I needed to subtract one from the other,

right. So, I will do plus 1 minus 1, this is just a simple addition and I will get this, is that

fine? Everyone agrees with this? This is just a adder, right, this is just an aggregator

everyone gets this? So, now, I have given you the tower maker? If you put enough of

these tower makers and learn the w’s appropriately what will you get?

Student: (Refer Time: 13:48).

That  function  that  we  were  needed.  So,  you  can  approximate  it  arbitrarily  to  any

precision that you want as long as you keep increasing the number of these units, right.

So, these units actually give you one tower more of these units that if you have actually

this much this is the input ring, ok. The more such tower makers that you have the more

is the bars that you will get and then you can approximate everyone gets the intuition

behind this? Fine, ok. This all is always good in one dimensions.



(Refer Slide Time: 14:21)

Now, what will happen in two dimensions? What if we have more than one input? What

is the tower there? Do you do you guys all do all know what is the tower there?

Student: (Refer Time: 14:32).

If you say no, I will give you a zero on the assignment. Remember the last question of

the assignment? Did you all make a tower? Did you all make a 2D tower? Did you all

copy that? No. So, what if we have more than one inputs suppose you had again trying to

take a decision about whether we will find oil at a particular location of the ocean, right

and suppose, now we base it on 2 two, right. So, say this is salinity, this should be x 1,

should be x 2 should be y, and this is pressure, ok.

Now, just observe about the red and blue points. So, the red points are where you will

not, for those configurations of salinity comma pressure you will not find oil and the blue

points are for which you will find oil. What is the one thing that you can tell me about

the red points and the blue points? Not linearly separable, right, but we still want to be

able to learn this, is that fine, a single perceptron cannot do it I will also make a case for

a single sigmoid neuron cannot do it and then I will show you that. In fact, first I will

show you that with a network of neurons we can do it and then I will show that: with a

signal single sigmoid neuron you cannot not actually do that.



So, now this is again a valid problem you could have we could imagine that you will get

this kind of data where you have two factors and your function is some arbitrary function

of these two factors. It is not a need linear boundary between the blue and red points.

Everyone sees that the blue and red points are not linearly separable you cannot draw a

plane such that all your red points lie on one side and the blue points lie on the other

side, everyone sees that ok, but the solution which I have plotted here that is a good

solution. It makes sure that all the red points are in this region and the blue points are

outside.

So, it will predict a high value for these red points and a zero value everywhere for the

blue points, is that obvious? How many of you understand that figure? Ok, good.

(Refer Slide Time: 16:46)

So, now I want to show that even in 2- dimensions I could come up with arbitrary. I

could come up with a neural network which could actually approximate this and again

what will I look for? A tower maker, right. I just want something which can make towers

and approximate it, ok.



(Refer Slide Time: 16:48)

So, this is what a 2-dimensional sigmoid looks like slightly incorrect because I have what

I have done is I have actually said w 2 to 0. So, if you actually I would want you to do

this go back and plot this for w 1 equal to 3 and w 2 equal to 3, ok.

Just go back and plot this and see what. You get you will not get such a smooth such a

nice looking S, but you will still  get something which looks like looks like a snakes

hood, right. So, in still get that S shaped function it just that it would be bent at some

points and it be thinner at some points and broader at the other points. So, just go back

and see and then you will realize what is happening, right.



(Refer Slide Time: 17:29)

So, here again what we want to figure out is from the single sigmoid I was able to take

you to a tower function, right. From a 2-dimensional sigmoid what does a tower mean

here and how do I take you to the tower? Ok. So, that is what I want to do. So, I have

said w 2 equal to 0 and I will it will become obvious why I have done that. So, just

understand what the figure is doing, right. So, this if you just look at this is like the cross

cut, right so, you are looking at the front view of this figure and that is just the sigmoid

function without the w 2 right and now, since I have said w 2 equal to 0, no matter what I

set x 2 to the same function will get repeated throughout, that axis, do you get that?

So, that is why this entire function is just getting repeated throughout this axis and then

you just get a similar S shape function, everyone gets that? How many of you do not get

that? How many of you get that? Ok. So, this if you look at the front view this is the

sigmoid of one variable, but since I have said w 2 to 0, no matter what I change x 2 to,

the function is going to remain the same. So, it will just get copied throughout the x 2

axis, is that, fine with you.

Now, what will happen if I increase w 2, sorry w 1? Same thing right, it will just keep

shifting till it becomes almost like a 2D step function, ok. Now, what will happen if I

increase b? Shift. I can do the same thing here also; same logic applies here also, ok.



(Refer Slide Time: 19:12)

Now, what is the next step that I am going to do? Take two of these which are shifted by

some point and, then subtract what will I get? Everyone had this figure in mind? So, just

see right. So, this portion both are 0, so, 0 minus 0 would be 0 this portion this is 1, but

this is 0. So, that would be 1 minus 0 and again in this portion both of them are 1. So, 1

minus 1 would be 0. So, you will get this kind of function would you like to live in such

a tower? I am very serious, yes or no? No? Why?. It is open from two sides, right. You

cannot live in this tower. So, you want something which is a closed tower, right. So, how

will you do that give me an intuition?

Student: (Refer Time: 19:51).

We will do the reverse thing. What will be set to 0?

Student: (Refer Time: 19:57).

W 1, ok.



(Refer Slide Time: 19:58)

And, this is how it would look the orientation would change and again so, notice that this

is your sigmoid function and since I have set x 1 to 0, no matter what I change along the

x 1 axis the same function gets copied and you get a nice looking a sigmoid function, ok.

Now, again I will do the same thing I will increase the w, I will get a close to a step

function I will increase the b. I will move along this axis.

(Refer Slide Time: 20:24)



Next step, take two of these subtract get what? Another tower function, this is also not a

tower that you like to stay in. So, what do I do now? Add them, sure? Add this tower to

the other tower; this is what you did on the assignment? You do not remember, ok, fine.

(Refer Slide Time: 20:44)

So, now what will happen if I add these two, will you get a tower function? What will

you get?

Student: (Refer Time: 20:51).

You will  get a tower function with a parking floor, right? Is that what you will  get?

Everyone understands why this is? So, these portions both are 0. So, you get 0 same

logic applies for all the four corners, right, is that fine; now, for this portion or rather this

area, right. So, this guy is 0, this guy is 1. So, you will get a 1, the same logic applies for

all these four corners in the centre both are actually 1. So, 1 plus 1 would give you 2. So,

this is 2, this is level 2, this is level 1, this is level 0, is that fine?

So,  what  am  I  done  so  far?  I  have  taken  my  x  1,  x  2  passed  it  through  some

transformations, right this what are these transformations we will see, but transform it

through these multiple hoops, right where I adjusted a w’s and b’s and I have got some z

right and this is how that z behaves. For different values of x 1 comma x 2, I will get

these different values and these values range from 0 to 1 to 2, is this pictured clear? I

have taken my original x 1 comma x 2, passed it to some of these transformations and



irrespective of what my x 1 to x 2 is this tells me the entire range of values that I will get.

For some combination of x 1 comma x 2 I will get 0, for some combinations I will get 1,

for some combinations I will get 2 and some combinations also between 1 and 2, right.

So, these places where it transitions, is that clear, is that picture clear to everyone? Ok.

So, now I can treat this as the output z, ok. Now, from here how do I go to a tower?

Student: (Refer Time: 22:47).

Threshold it; how will you threshold it? What do you want? You only want this much

part to exist, right this without the parking floor. How will you do it? Any output which

is greater than equal to 2, you want to keep it any output which is less than 2, you want

to make it 0. If I do this will I get a tower? Right, sorry, greater than equal to 1 any value

which is greater than equal to 1, you want to keep it, anything which is less than 1 you

want to make it 0. So, this entire thing will get demolished. How do you do this? This is

an if, else, ok. What?

Student: (Refer Time: 23:40).

If else if something is greater than equal to 0, do something else do something else, what

is that?

Student: (Refer Time: 23:55).

Perceptron, right, but we do not want to use perceptron. We want to use sigmoid neurons.

Have you learned an approximation from a sigmoid neuron to a perceptron. Very high w,

right; you get the intuition. Let us see what we do on the next slide.



(Refer Slide Time: 24:07)

So, I take this any z which comes from here I will pass it through a sigmoid neuron

which are very high slope such that the threshold is at 1, anything which is greater than 1

will pass out as 1; anything which is less than 1 will go to 0. So, everyone sees how we

took this structure and converted it to a tower. We have this tower now, now what do I do

with this?

(Refer Slide Time: 24:34)

I lead multiple such towers and I can approximate this I could put a tower here and so on.

I could have these multiple  towers and here of course, all  my towers would be of 0



height right in this region, right. So now, I can cover the entire 2D space with a lot of

tower functions and approximate this exactly, that is a very weird statement, approximate

this exactly I mean approximate this to arbitrary precision, everyone gets this? Do you

see why we constructed these tower functions and now we can put them inside this cone

and approximate it.

(Refer Slide Time: 25:09)

Now, all  this  is  fine  I  was  making  some towers  there.  So,  can  you now give  me a

complete neural network which does this? I want you to imagine that. Remember you are

taking what I am asking you to do is this x 1, x 2 give me this such that I get this 2-

dimensional tower I do not know how to draw it, something like this maybe whatever.

So, I want this 2-dimensional tower what is this network of perceptrons going to look

like? Just go back to all the operations that we did and try to imagine in your mind.

Student: (Refer Time: 25:47).

No, we will not use perceptron because we can always use a sigmoid neuron instead of a

perceptron with the high w. I do not expect you to answer this I just want you to imagine;

right, we just try with a there is something known as a pen, there is something known as

a paper, ok. So, here is the solution.



(Refer Slide Time: 26:08)

So, what is happening here you have this salinity and oh actually this is slightly wrong I

do not know why you guys saying it is correct. Actually, at both places I need both the

inputs it is just that in one case I do not care about that input because I have said w 2 to

0. So, I learn these weights w 1 w 2 b, w 1 w 2 b of course, here the network should learn

that w 2 is equal to 0, right and then you get this one tower do not needs this to be

modified, this figure is incorrect.

So, we need x 1 x 2 both as inputs we need to label it with w 1 w 2 equal to 0 and b and

so on it. So, we will discuss this later, anyways, but you get the idea right that you take

these two inputs make one tower, take the inputs again make another tower, add them up

to get this function, pass it through this step neuron function step sigmoid function, so

that you get the tower. So, this is one block. You will have many such blocks each of

which will learn different w’s and b’s. So, that they get shifted and then you will place

them all together you have an aggregator on top of this which will combine them. Just a

minute, how many of you get this? Good.

Student: (Refer Time: 27:31).

Yes.  So,  that  is  a good question,  I  am going to  come to that,  right.  So,  I  have very

conveniently given you a solution where I have what is the bad thing that I have done? I

have hand coded these things, right. I have hand coded w ones w twos and b’s, is that



fine in practice? No, I mean that is where we started off and we do not want to hand code

these, right.

So, now you know a learning algorithm for a single sigmoid neuron. Now, what you

have is a network of neurons right for this network of neurons, I need to give you a

learning algorithm driven by the objective function that whatever output it gives would

be very close to that arbitrary function that you are trying to model.

If I give you a learning algorithm then you would be convinced that if this has to be

minimized and the weight configuration which need it needs to arrive at as w 2 is equal

to 0, then the algorithm should be able to do that, right. Because, we saw we have some

faith  in  these  algorithms  in  the  case  of  a  signal  sigmoid  neuron that  with  the  right

objective function it will give me a principled way of reaching that objective function. In

this big network my objective function is to arbitrarily to approximate this of this true

function, right.

So, now if I give you that as the objective that whatever outputs the network generates;

so, the network might generate something like this. So, that has to be very close to the

true output that is the objective function that I am going to use in that learning algorithm

and if that learning algorithm works which will prove then you should be able to arrive at

the necessary weights to make this approximation, right, is that clear and in fact, there

might you might not even have to do these multiple towers in practice. All I am trying to

prove is that there is one solution which exists, right.

If there is one solution which exists I can say that locate the network can learn, that is the

only claim I make. I am not saying this is the only solution, right. Same as in the case of

the Boolean functions, where I said that one solution exists where you have to raise to n

neurons  of  the  hidden layer  that  was a  sufficient  solution,  that  was not  a  necessary

solution for the AND function we were actually able to do it with a single sigma neuron,

right. So, just keep that in mind I am just giving you a sufficient solution.

And, the network could actually learn something better than this all right this is again a

very bulky solution, why? It scales with the number of neurones’ proportional to number

of input variables that you have. So, that is for a sufficient solution, but you would want

something better than that. All I am trying to say is that it can approximate I am just



telling you the representation power and just as we had the catch there that the hidden

layer is very large the same catch applies here also, is this story clear to everyone?

So, I have given you a solution I have not told you how to learn the weights I have given

you a network. Now, later on we will discuss a learning algorithm for this network. And

we will have some confidence that given a particular objective function that learning

algorithm can strive to go to minimum error or minimize the quantity of that objective

function that is going to come in two lectures from now, is that fine?

(Refer Slide Time: 30:32)

And, that was for the tower function now; I could have actually directly done this right.

So, I wanted to approximate these functions. So, I could have placed a lot of these kinds

of things here and approximated it, right. So, that instead of that very high slope sigmoid

function I could just use a normal sigmoid function also. And again there is a error here,

but I hope you get the picture, it is just that you feed both the inputs to them.



(Refer Slide Time: 30:56)

So, for 1 dimensional input we needed 2 neurons to construct a tower. For 2 dimensional

input how many neurons did we need? I am just counting these because these are simple

aggregators, right and this is one constant at the end. So, how many did we need actually

o of 2 n, I mean o of I mean. So, for n how many would we need? Let us try to work that

out, ok. So, I will ask you that in the quiz how many do we need for n dimensions.

(Refer Slide Time: 31:30)

Now, why do we care about approximating any arbitrary function? We will again try to

close the loop now, we saw that we can arbitrarily we can approximate any arbitrary



function. But now again I want to come back to the point why do we want to do this and

can we tie this back to the classification problem that we were dealing with.

(Refer Slide Time: 31:47)

And, this is the data which I had given you which was there were some points some

values of x and y sorry; this should be x 1 and x 2 it is, where this is pressure and salinity

or salinity tendency and this is the output which is oil, ok.

Now, there  was  this  is  what  the  function  actually  looks  like  now what  would  have

happened if I had used a single sigmoid neuron to try to approximate this function try to

represent this function and sigmoid neuron in 2 dimensions, right, so, the 2 dimensional

sigma what would have happened? Can you give me one solution for this? Remember

earlier I had said that perceptron cannot handle data which is not linearly separable, but

then I anyways used it for data which was not linearly separable. And we got some line

such that we got some errors the red points and the blue points are not clearly separated.

So, I am asking you for a similar thing here, I force you to use a sigmoid neuron, what

would you give me?



(Refer Slide Time: 32:47)

Is  this  fine?  This  is  one  of  the  possibilities  of  course,  it  could  have  been  oriented

differently and several things. What is happening here is that for these blue points it is

acting correctly, but for these red points it is not acting correctly. I am assuming red is

positive and blue is negative, I think that should have been the other way round, but let

us assume red is positive and blue is negative. Again, now for these red points this part is

working fine, but it is misclassifying all these blue points.

So, all these bad locations is actually saying that you can find oil and for all these good

locations here it is saying that you cannot find oil, that is what a sigmoid neuron would

do and you could have multiple solutions are possible here right, but all of them would

have this problem that will make errors on some red points and some blue points right,

but the true solution that  we wanted is  something like this. Again there are multiple

solutions possible, right. You could have anything is an error you could have even finer

one side you could just  have this  much there many things possible  this  is  one such

solution. What the illustrative proof told you is that, you can actually use a network of

perceptrons  and  approximate  this  arbitrary  function  which  exists  between  the  input

variables and the output variable.

So,  if  this  is  the  function  which  exists  between  the  input  variables  and  the  output

variables  now,  you  could  take  these  multiple  2  dimensional  tower  functions  and

approximate it. With the catch that you might need many of these in the hidden layer, but



you can still  do that, ok. So, that is why this in theorem important because now any

problem that you take right any problem that you will have in machine learning would

always want you to take an x learn a function of x which takes you to y this function will

be have some the function will have some?

Student: (Refer Time: 34:30).

Parameters,  right and now what this theorem is saying is that you could adjust these

parameters such that you can arbitrarily come close to the true function, right. So, that is

the significance of this. Any machine learning problem that you can think of in the sense

of classification or regression you would find that this is useful and I am giving you a

very powerful tool to do that. Of course, with the catch that I am not giving you any

bound on the number of neurons that you will need, I am just saying use as many as you

want, right, is that fine?

So, that is where we will end today’s lecture.


