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Representation Power of a Network of Perceptrons

We will go to the next module, where we talk about a Network of Perceptrons and then

we talk about the representation power of a network of perceptrons.  So, this module

should have been titled as Network of Perceptrons, ok. So now, in particular what we are

going to  see  is  how any Boolean function  whether  linearly  separable  or  not  can  be

represented using a network of perceptrons.

(Refer Slide Time: 00:25)

Now, what do I mean by represented during a network of perceptrons? What it means is

that I will give you a network of perceptrons, you take any Boolean function feed any

value of x 1 to x n and the network will give you the same y as it is expected from the

truth table, ok, that is what representation means just to put it out clearly, ok, fine.



(Refer Slide Time: 00:57)

And now I am going to again do a setup, I am not giving you the solution, I am just

making some set up and then we will discuss the solution, right.

So, for this discussion we will assume that true equal to plus 1 and false equal to minus

1. So, instead of 0 and 1, we will assume minus 1 and plus 1, ok. And these are your

inputs x 1 and x 2 we are taking the 2 input case. And I will have 4 perceptrons first, I

will have 4 perceptrons; and I will also have very specific weights connected to from the

inputs to these perceptrons. So, red means minus 1 and blue means plus 1, right. So, the

first 2 inputs are connected with a weight of minus 1. The next 2 inputs with minus 1

plus 1, plus 1 minus 1 and the last would be?

Student: (Refer Time: 01:43).

Plus 1 plus 1, ok. Now, once I have this, I will set the bias of all these perceptrons to

minus 2, ok. So, that will; that means, they will fire only if they are weighted sum of the

inputs is greater than 2, ok, fine? Ok now after this I will have one more perceptron. So, I

had 2 inputs, I converted that to 4 values, these 4 values are now going to feed into one

more perceptron ok.

And these weights I will not fix them, these are the weights that I am going to learn ok,

these and the final output of this perceptron which is the green perceptron is the output of

the network, right. So now, coming back to what I said that it can represent any function,



what I mean is that you take any function, feed in any combination of x 1, x 2, this

network will give you y and I am telling you that it will match the truth table of that

function, ok, right.

(Refer Slide Time: 02:43)

Now, let us define some terminology this will also stay with us for the rest of the course.

So, this network contains 3 layers. The layer containing the inputs it is called the input

layer; very creative, the middle layer containing the 4 perceptrons is called the hidden

layer. And the output layer which gives you the output is called the output layer output

perceptron; which gives you the output is called the output layer right. So, you have a

input layer or hidden layer and an output layer. 

And the outputs of the 4 perceptrons I am going to call them as h 1, h 2, h 3 and h 4, ok.

And the red and blue edges are called the weights for the layer 1, which we have not

learned we have actually set them by hand. And the weights for w 1, w 2, w 3, w 4 are

called  the  weights  for  the  second layer,  other  the  layer  2  weights  and these  are  the

weights that we want to learn, ok.



(Refer Slide Time: 03:34)

Now I  make  this  claim  that  this  network,  it  can  take  any  Boolean  function,  it  can

implement  any  Boolean  function,  right?  So,  this  same  network  can  implement  any

Boolean function; that means, if I take this network, and if I try to learn the values of w

1, w 2, w 3, w 4, for any Boolean function whether it was originally linearly separable or

not; I will be able to implement it, right.

So,  isn’t  this  an  astonishing  claim?  Any  Boolean  function,  do  you  think  this  is  an

astonishing claim? Well not really if you really understand what is happening here right.

So, let us see what exactly is happening here. So, when will perceptron 1 fire? When the

input is false false 0; will it fire for any other input? When will perceptron 2 fire? Any

other input? Same for the next perceptron? Same for the next perceptron?

So, you start getting an intuition of what is happening here? You do, let us see. So now,

for  this  particular  network  now  that  I  have  given  you  some  intuition  of  what  is

happening. Basically every node or every neuron in the hidden layer is catering to one of

the inputs, and it will fire only for that input, it will not fire for anyone else right.



(Refer Slide Time: 04:59)

So now let us try to implement the XOR function, and see what are the ok. So now, let us

try to implement the XOR function, and see what are the set of inequalities that result

from this. Earlier when we try to look at the set of inequalities, we ended up with a

contradiction,  let  us  see if  that  happens  now. So,  this  is  x  1,  x  2 this  is  your  XOR

function.  So, that is just like any truth table then I am noting down the intermediate

values. And then my final input to the green perceptron is going to be summation of

these, ok, fine and it will fire if this summation is greater than equal to 0, or else it will

not fire, ok.

Now, for the first case when the input is 0 comma 0 what is h 1 going to be? 1 and

everything else is going to be 0, that is exactly what we saw in the previous slide. So,

what is the summation going to be? Just w 1 right, so, it is w 1 h 1 plus w 2 h 2 so on, but

h 2 to h 4 are 0. So, only thing that remains is w 1; for the second case, w 2; for the third

case, w 3 for the 4th case w 4.

So, is it clear now what is happening? Let us go a bit more into detail right. So now, for

the XOR condition, what are the conditions that we need? W 1 should be less than w 0,

right? Because this should not fire, w 2 should be greater than equal to 0, w 3 should be

greater than equal to sorry w naught not w is not 0, and w 4 should not fire. So, w 4

should be less than w. Are there any contradictions here? By design no right. So, we have

made sure that for the final layer only one of these guys feeds to it.



So, it does not matter what the remaining outputs are, right? They do not interfere with

each other, unlike earlier where we had conditions like w 1 should be something, w 2

should be something, and then w 1 plus w 2 should be something. There are no such

contradictions here. Because we have made sure that every neuron in the middle layer

actually  caters  to  one  specific  input,  and now the  weights  in  the  final  layer  can  be

adjusted so that we get the desired output for that input, right.

So, I can set whatever value of w and I need to set; so, that I can fire the new on it. In

fact, I could just fix w 0 as 0, and then I can adjust the weights of w 1, w 2, w 3. w 4,

right. And I can implement the XOR function. So, are you convinced that this can be

used to implement any Boolean function? How many if you are not convinced? So, the

negative question never works, how many if you are convinced? Sure, ok.

Now, what if we had 3 inputs?

(Refer Slide Time: 07:40)

Before that it should be clear that the same network can be used for any of the remaining

15 functions, right? And for each of these functions we will end up with a different value

of w 1, w 2, w 3, 4, but you will be able to satisfy the truth table, right and you can go

home and try it, which I am sure you will do.



(Refer Slide Time: 07:56)

Ah So, what if we have a function of 3 inputs? 256, what is 256? No.

Student: (Refer Time: 08:04).

8 right? Fine, sure, ok.

(Refer Slide Time: 08:11)

So, this is what it will look like, and anything specific about the weights of the initial

layer, can you tell me what the weights would be? Just tell me red red red red blue blue



whatever colours you like this thing. First perceptron what would the weight colours be

red, red, red, then?

Student: (Refer Time: 08:29).

Then.

Student: (Refer Time: 08:30). 

Enough so, this is how it will look right, right and now this same thing will work with

the same logic. For any Boolean function of 3 inputs, you will get these 8 inequalities,

and they will not interfere with each other, and you can set the values of w 1 to w 8 so

that you can satisfy it ok, fine.

(Refer Slide Time: 08:47)

So, what if we have n inputs?

Student: 2 power n.

2 power n perceptrons in the middle layer, right, ok?



(Refer Slide Time: 08:55)

So now here is the theorem, any Boolean function of n inputs can be represented exactly

by a network of perceptrons containing one hidden layer with 2 raised to n perceptrons,

and one output layer containing 1 perceptron, right? We just saw an informal proof of

this, we just constructed I just gave you the answer it this is how you will get it, right?

Now note that a network of 2 raised to n plus 1 perceptron, is it sufficient or necessary?

Or both? Sufficient yes that is what it says, is it necessary? 

No,  we  already  saw  the  and  function  which  we  can  just  represent  using  a  single

perceptron, right. So, it is not necessary, but it is sufficient ok. So, this is a very powerful

theorem if you think of it right. So now, this whole objection right remember this history,

and when we have the c I winter when people showed that perceptron cannot handle the

XOR function that is for a single perceptron.

If you have a network of perceptrons you can actually have any Boolean function, but

what  is  the  catch?  As  the  value  of  n  increases  the  number  of  neurons  increases

exponentially right, but still in theory you could have a solution, ok.



(Refer Slide Time: 10:01)

Now again why do we care about Boolean functions, I keep coming back to this. Why do

we care about Boolean functions, because you took this and so, the question that I the

question that I want to answer is, how does this relate back to our original problem?

Right we know any Boolean function can be implemented, how do we go back to our

original problem; which is whether we like a movie or not, right.

And you could see that there is a whole family of problems there, right, whether we like

a movie or not, whether we like a product or not, whether I want to go home today or

not, yes no any kind of a yes no problem, it is a whole family of problems there, right?



(Refer Slide Time: 10:34)

So, let us see so, we are given this data from our past experience, right. So, we are told

that this is what the movie looks like. These are the actor’s, director’s, joiners everything;

we also know whether we like these or not.

So, we have a set of positive points and we have a set of negative points, right. And now

we want to have a computational model which can satisfy this data; that means, once the

model is trained, once whatever algorithm I algorithm I use has converged, it should be

able to give me the correct output for a given input. That is what we are interested in, and

that is a real classification problem that we are interested in. Now for each movie we are

given these factors as well as the decision.

And I said p i’s and n i’s are positive and negative points. The data may or may not be

linearly separable. It is not necessary that the data is linearly separable, those were the

goody cases it, but in general that may not happen. But do we worry about it now? No

what the previous theorem told us is that irrespective of whether your data is linearly

separable or not,  I can give you a network which will  be able to solve this  problem

modulo; that it might be very expensive in the number of neurons in the middle, right?

But if you keep that aside, I have a solution for this.

And that is why we care about Boolean functions, because many problems we could

actually cause to it in a simplistic way, if we ignore the real inputs. And if you even think

of the real inputs, right? Suppose it could take all values between 0 to 1, you can always



make it binary, you could say that is the value between 0 and 0.1 is the value between 0.1

and 0.2. And you could make it as small the scale as small as possible right. So, that is

why we care about this.

(Refer Slide Time: 12:09)

So, the story so far has been that the network of networks of the form that we just saw, it

which contain one input layer, output layer and one or more hidden layers. These are

known as multilayer perceptrons, but a more appropriate terminology would be multi-

layered network of perceptrons, right? 

Because the perceptron is not multi-layered; you have a network of perceptrons and that

network has many layers right. But generally there is abuse of notation; we always call it

MLP which is multi-layered perceptrons. And the theorem that we just saw gives us the

representation power of an MLP, and basically tells us that it can represent any Boolean

function that we want to deal with, right? So, that is where we will end this class, and in

the next class we will talk about sigmoid neurons, ok.

Thank you.


