
Deep Learning
Prof. Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 2.3
Lecture - 02
Perceptron

Now, let us go to the next module which is Perceptron. 

(Refer Slide Time: 00:18)

.

So, far the story has been about Boolean input, but are all problems that we deal with, we

are only dealing with? Do we always only deal with Boolean inputs? So, yeah so, what

we spoke about is Boolean functions, right.  Now, consider this example. This worked

fine for a movie example where we had these as actor so much and his director and so

on. But now consider the example where you are trying to decide. You are in oil mining

company and you are trying to decide whether you should mine or drill at a particular

station or not, right. 

Now, this could depend on various factors like what is the pressure on the surface, on the

ocean surface at that point, what is the salinity of the water at that point, what is the

aquatic marina aquatic life at that point and so on, right. So, these are not really Boolean

function, right. The salinity is a real number, density would be a real number, pressure



would be a real number and so on, right and this is a very valid decision problem, right.

Companies would be interested in doing this, right. So, in such cases our inputs are going

to be real, but so far may call up its neuron only deals with boolean inputs, right. So, we

still need to take care of that limitation. 

Now, how did we decide the threshold in all these cases? I just asked you, you computed

it and you told me right,  but  that is not going to work out. I mean it does not scale to

larger problems where you have many more dimensions and the inputs are not Boolean

and so on, right. So, we need a way of learning this threshold. 

Now, again returning to the movie example; maybe for me the actor is the only thing that

matters and all the other inputs are not so important.  Then, what do I need actually?  I

need some way of weighing these inputs, right. I should be able to say that this input is

more important than the others, right. Now, I am treating all of them equal. I am just

taking a simple sum. 

If that sum causes a threshold, I am fine otherwise I am not fine right, but maybe I want

to raise the weight for some of these inputs or lower the weight for some of these inputs,

right. So, whether it is raining outside or not maybe does not matter. I have a car, I could

go or I could wear a jacket or an umbrella or something, right. So, that input is probably

not so important, right.

What about functions which are not linearly separable, right? We have just been dealing

with the goody stuff which is all  linearly separable,  but  we will see that even in the

restricted Boolean case, there could be some functions which are not linearly separable

and if that is the case, how do we deal with it, right. So, these are some questions that we

need to answer. 



(Refer Slide Time: 02:35)

.

So, first we will start with perceptron which tries to fix some of these things and then, we

will move forward from them. So, as we had discussed in the history lecture that this was

proposed in 1958 by Frank Rosenblatt and this is what the perceptron looks like. Do you

see any difference with the  McCulloch Pitts neuron weights, right? You have a weight

associated with each of the input otherwise everything seems, right. 

So, this is a more general computational model than the McCulloch Pitts neuron.  The

other interesting thing is that of course we have introduced these weights and you also

have a mechanism for learning these weights. So, remember in the earlier case, our only

parameter  was  theta  which  we  are  kind  of  hand  setting  right,  but  now  with  the

perceptron, we will have a learning algorithm which will not just help us learn theta, but

also these weights for the inputs, right. 

How do I know that actor is what matters or director is what matters? Given a lot of past

viewing experience, right past given a lot of data about the movies which I have watched

in the past, how do I know which are the weights to assign this, right. So, we will see an

algorithm which will help us do that, right and the inputs are no longer limited to be

Boolean values. They can be real values also, right. So, that is the classical perceptron,

but what I am talking about here and the rest of the lecture is the refined version which

was proposed by Minsky and Papert which is known as the perceptron model, right. So,



when I say perceptron, I am referring to this model. So, this diagram also corresponds to

that. 

(Refer Slide Time: 04:06)

So, now let us see what the perceptron does.  This is how it  operates.  It will give an

output  of  1  if  the  weighted  sum of  the inputs  is  greater  than a  threshold,  right.  So,

remember that in the m p neuron we did not have these weights, but now we have these

weighted sum of the inputs and the output is going to be 0 if this weighted sum is less

than threshold, right. It is not very different from the m p neuron, right. 

Now, I am just going to do some trickery and try to get it to a better notation or a better

form, right.  So,  is this?  I have just taken the theta on this side.  Now is this ok? Notice

this here the indices were 1 to n.  Now, I have made it 0 to n and the theta is suddenly

disappeared. So, what has happened. 

Student: w 0 is. 

Minus theta, right and x 0 is 1. Does anyone not get this right. If I just start it from 1 to n,

then it would be summation i equal to 1 to n w i x i plus w 0 x 0, but I am just saying w 0

is equal to minus theta and x 0 is equal to 1 which exactly gives me back this, right; So,

very simple x 0 equal to 1 and w 0 is equal to minus theta.  So,  in effect what I am

assuming is that instead of having this threshold as a separate quantity, I just think that

that is one of my inputs which is always on and the weight of that input is minus theta.



So, now the job of all these other inputs and their weights is to make sure that their sum

is greater than this input which we have, right; does not make sense, fine. So, this is how

this is the more accepted convention for writing the perceptron equation, right. So, it

fires when this summation is greater than equal to 0, otherwise it does not fire, ok.

(Refer Slide Time: 06:07)

.

Now, let me ask a few questions, right.  So,  why are we trying to implement Boolean

functions. I have already answered this, but I will keep repeating this question, so that it

really gets drill in.  Why do we need weights?  Again we briefly touched upon that and

why is w naught which is negative of theta often called the bias?



(Refer Slide Time: 06:25)

So, again let us return back to the task of predicting whether you would like to watch a

movie or not and suppose we base our decisions on three simple inputs; actor genre and

director, right. Now, based on our past viewing experience, we may give a high weight to

Nolan as compared to the other inputs. So, what does that mean? It means that as long as

the director is Christopher Nolan, I am going to watch this movie irrespective of who the

actor is or what the genre of the movie, right. So, that is exactly what we want and that is

the reason why we want these weights. 

(Refer Slide Time: 06:58)



Now, w 0 is often called the bias as it represents the prior.  So, now let me ask a very

simple question.  Suppose you are a movie buff.  What would theta be?  0  right. I mean

you will watch any movie irrespective of who the actor, director and genre, right. Now,

suppose you are a very niche movie watcher who only watches those movies which are

which the genre is thriller, the director was Christopher Nolan and the actor was Damon,

then what would your threshold be? 3 right. 

High in this case;  I always ask this question do you know of any such movie always

takes a while. Interstellar  so, the weights and the bias will depend on the data which in

this case is the viewer history, right. So, that is the whole setup, right. That is why you

want these weights and that is why you want these biases and that is why we want to

learn them,. 

(Refer Slide Time: 07:48)

Now, before we see whether or how we can learn these weights and biases, one question

that we need to ask is what kind of functions can be implemented using the perceptron

and are these function any different from the McCulloch Pitts neuron? So, before I go to

the next slide, any guesses?  I am hearing some interesting answers which are at least

partly correct. 



(Refer Slide Time: 08:11)

.

So, this is what a McCulloch Pitts neuron looks like and this is what a perceptron looks

like. The only difference is this red part which is weights which have count on it, right.

So, it is again clear that what the perceptron also does is, it divides the input space into

two halves where all the points for which the output has to be one, would lie on one side

of this plane and all the points where which the output should be 0 would lie on the other

side of this plane, right. So, it is not doing anything different from what the perceptron

was doing. So, then what is the difference?

You have these weights and you have a mechanism for learning these weights as well as

a threshold. We are not going to hand code them. So, we will first revisit some Boolean

functions and then, see the perceptron learning algorithm, ok.



(Refer Slide Time: 08:55)

.

So, now let us see what the first condition does, right. This condition if I actually expand

it out, then this is what it turns out to be, right and what is that condition telling me

actually w naught should be less than 0, clear. So, now based on these, what do you have

here? Actually what is this?  A system of  linear inequalities, right and you know you

could solve this,  right. You have algorithms for solving this not always, but you could

find some solution, right and one possible solution which I have given you her is w 0 is

equal to minus 1 w 1 equal to 1.1 and w 2 equal to 1.1. 

So, just let us just draw that line,  ok. So, what is the line?  It is 1.1 x 1 plus 1.1 x 2 is

equal to 1, right. That is the line and this is the line and you see it satisfies the conditions

that I have is this the only solution possible.  No, right I  could have this also as a valid

line. If I could draw properly, right all of these are valid solutions, right. So, it is result in

different w 1 w naught and w 0s, ok. So, all of these are possible solutions. 

In  fact,  I  have  been  telling  you  that  you  had  to  set  the  threshold  by  hand  for  the

McCulloch Pitts  neuron,  but  that  is  not  true because you could have written similar

equations there and then, decided what the value of theta should be, right. So, you could

try this out for the McCulloch Pitts neuron. Also, you will get a similar set of conditions

or I mean similar set of inequalities and you can just say what is the value of theta, that

you could set to solve that right. So, that ends that module. 


	Deep Learning
	

