NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Discrete Mathematics Set Theory

Set difference - Part 2

With Prof. S.R.S. Iyengar Department of Computer Science IIT Ropar

This A-B that we have been discussing has a very interesting form, and that is it is actually equal to A intersection B complement, so how is that true? Let us try proving this using the same old technique that we are advertising for a long time that is take the left-hand side show that it's subset of right-hand side and the other way around.

So let me take an element X belonging to A-B this implies that X belongs to A and X does not belong to B only then X will be in A-B, what does this imply? X belongs to A and X does not belong to B implies X belongs to A and X does not belong to B means X belongs to B complement, which means X is in some set and in some other set means it is there in the intersection of these two sets, and hence X belongs to A intersection B complement.

Now this means A-B is a subset of A intersection B complement, now how do we show that the other way subset is also true, other way containment we say that's the language containment is

$$A - B = A \cap B^{c}$$

$$x \in A - B$$

$$\Rightarrow x \in A \quad \xi \quad x \notin B$$

$$\Rightarrow x \in A \quad \xi \quad x \in B^{c}$$
Hence $x \in A \cap B^{c}$

$$A - B \subset A \cap B^{c}$$

also true, A intersection B complement is a subset of A-B, how do we show this? Very simple take an X in A intersection B complement this means X belongs to A and X belongs to B complement, I'm going to be fast now because we have, this is not new for us we have solved a couple of problems already, implies X belongs to A and X belongs to B complement.

And now this implies that X belongs to A, and X does not belong to B, that's what your X belonging to B complement means, now this, observe this what does it say? X is in A but not in B, which means by definition X should be in A but not in B which means X belongs to A-B, correct, so the inclusion is now proven A intersection B complement subset of A-B, if you observe carefully you will realize that proofs of both the sides this way and that way of containment is more or less the same, correct and hence I have shown that A-B is indeed equal to A intersection B complement this is true in the Venn diagram as well, if you look at this diagram here A, in A you remove those parts of B and what is this equal to, it is actually equal to A intersecting with B complement look at this figure shaded figure outside B, and that time A only have this moon-like structure in common, correct, so A-B is A intersection B complement.

IIT MADRAS PRODUCTION

Founded by Department of Higher Education Ministry of Human Resource Development Government of India

www.nptel.iitm.ac.in

Copyrights Reserved

IIT MADRAS PRODUCTION

Founded by Department of Higher Education Ministry of Human Resource Development Government of India

www.nptel.iitm.ac.in

Copyrights Reserved