NPTEL

NPTEL ONLINE CERTIFICATION COURSE

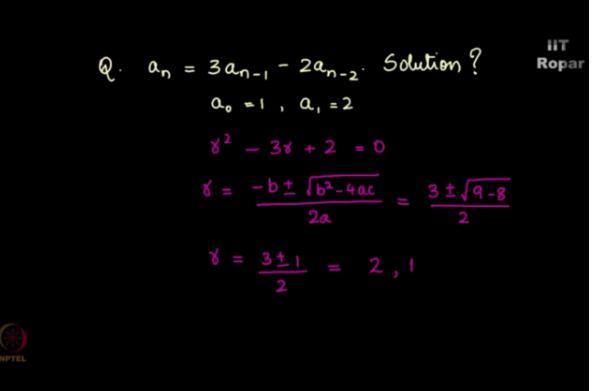
Discrete Mathematics Recurrence Relation

Soving recurrence relation-Example 1

By Prof. S.R.S Iyengar Department of Computer Science IIT Ropar

Let me state the theorem and paraphrase what the professor just told, let C1 and C2 be real numbers, suppose that X square -C1X - C2 = 0 has 2 distinct roots X1 and X2, then the sequence AN is the solution of the recurrence relation AN = C1 AN-1 + C2 AN-2, if and only if AN = alpha 1, X1 to the N + alpha 2 X2 to the N for N from 0, 1, 2 and so on where these alpha 1's and alpha 2's they are constants.

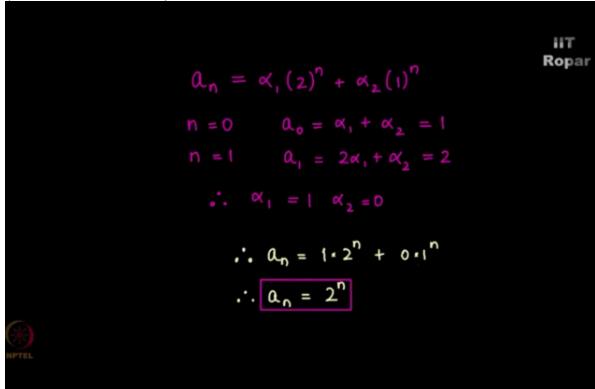
(Refer Slide Time: 00:47)


Let
$$c_1$$
 and c_2 be real numbers. Suppose
that $x^2 - c_1x - c_2 = 0$ has 2 distinct roots
 x_1 and x_2 . Then the sequence $\{a_n\}$ is a
solution of the recurrence relation
 $a_n = c_1a_{n-1} + c_2a_{n-2}$
iff $a_n = \alpha_1x_1^n + \alpha_2x_2^n$ for $n = 0, 1, 2, ...$
where α_1 and α_2 are constants.

Though the theorem might seem to be very tough and difficult to remember, it is actually very simple.

So given this quadratic equation which has 2 distinct roots X1 and X2, then this sequence AN it will be a solution of the recurrence relation and of what form is this recurrence relation? It is some constant times AN-1 + constant times AN-2, and the solution is of the form alpha 1 X1 to the N + alpha 2 X2 to the N, these X1 and X2 as you remember are the distinct roots of the quadratic equation.

Now let us see how we can apply this theorem in a few problems, if AN is given to be 3 into AN-1-2 times AN-2 then what is the solution of this recurrence relation, A naught is given to be 1 and A1 is given to be 2, so you have to find the solution of this recurrence relation.


Now so I am going to write now the quadratic relation of this or the characteristic equation of this recurrence relation, it is R square -3R + 2 = 0, how did I get this? As you see the constants here C1 and C2 are 3 and -2 respectively, and hence substituting that in the quadratic equation I get R square -3R + 2 = 0, now how can I solve this? I can solve it using the formula -B + or - B square -4AC square root / 2A, now solving this I will obtain the 2 roots, so let me substitute for ABC, so I will get 3 + or - root of 9-8/2 and this happens to be 3 + or - 1/2 which is 2 and 1, so 2 and 1 are the distinct roots of this quadratic equation, (Refer Slide Time: 03:10)

so I can write AN as alpha 1 into 2 to the N + alpha 2 1 to the N, right.

Now if I substitute N as 0, in this recurrence relation what will I get? A naught is anything to the N is, anything to the 0 is 1 and hence I'll get A naught is alpha 1 + alpha 2, and if I substitute N as 1 and the recurrence relation I'll get A1 as 2 alpha 1 + alpha 2, right, now we have these simultaneous equations with us, but according to the initial condition given we know that A naught is 1 and A1 is 2, right, so 1 = alpha 1 + alpha 2, and 2 = 2 alpha 1 + alpha 2, now

when we solve these simultaneous equations we see that alpha 1 is 1, alpha 2 is 0, so I can substitute these values back in the recurrence relation, so what will I get? AN = alpha 1 2 to the N + alpha 2 1 to the N this is the equation or if I substitute for alpha 1 and alpha 2 I'll get it as 1 into 2 to the N + 0 times 1 to the N and hence your final solution will be AN = 2 to the N, (Refer Slide Time: 04:43)

so this is the solution for the recurrence relation that we initially started with.

IIT MADRAS PRODUCTION

Founded by Department of Higher Education Ministry of Human Resources Development Government of India

www.nptel.iitm.ac.in

Copyrights Reserved