NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Discrete Mathematics Principle of Inclusion and Exclusion

Formula for Number of Onto Functions

By Prof. S.R.S Iyengar Department of Computer Science IIT Ropar

In general the number of onto functions from a set of an elements to a set of N elements is given by, let us see the formula now, (Refer Slide Time: 00:20)

In general, Number of onto functions from a set of m dements to a set of n dements is:

N choose 0 into N to the M - N choose 1 into N-1 to the M + N choose 2 into N-2 to the M - N choose 3 into N-3 to the M + N choose 4 into N-4 to the M so on + -1 to the N into N choose N into N-N to the M, do you see N-N would become 0. (Refer Slide Time: 00:53)

In general,
Number of onto functions from a set of
m dements to a set of n dements is:

$$\binom{n}{0}n^{m} - \binom{n}{1}(n-1)^{m} + \binom{n}{2}(n-2)^{m} - \binom{n}{3}(n-3)^{m}$$

$$+ \binom{n}{4}(n-4)^{m} - \dots + (-1)^{n}\binom{n}{0}(n-n)^{m}$$

Now how can I write it this formula as? I can write it as summation I from 0 to N, -1 to the I N choose I into N-I whole to the M, (Refer Slide Time: 01:11)

In general,
In general,
Number of onto functions from a set of
m duments to a set of n duments is:

$$\binom{n}{0}n^{m} - \binom{n}{1}(n-1)^{m} + \binom{n}{2}(n-2)^{m} - \binom{n}{3}(n-3)^{m}$$

$$+ \binom{n}{4}(n-4)^{m} - \dots + (-1)^{n}\binom{n}{n}(n-n)^{m}$$

$$= \sum_{i=0}^{n} (-1)^{i}\binom{n}{i}(n-i)^{m}$$

so this is the formula for the number of onto functions from a set of M elements to a set of N elements, the professor in the previous video had taken a particular case and had solved the

problem, now this is the general formula, we'll be seeing a couple of problems in the next video.

IIT MADRAS PRODUCTION

Founded by Department of Higher Education Ministry of Human Resources Development Government of India

www.nptel.iitm.ac.in

Copyrights Reserved