NPTEL

NPTEL ONLINE COURSE

Discrete Mathematics

Let Us Count

Applications of Binomial theorem

Prof. S.R.S Iyengar

Department of Computer Science

IIT Ropar

So we have seen what the binomial theorem states. Let us now see some beautiful applications of it. You all must have heard of 1 plus 1 by n whole power n. When I apply binomial theorem on this let us see what the terms are; 1 plus 1 by n whole to the n becomes nC0 1 power n into 1 by n whole power 0 plus nC1 1 power n minus 1 into 1 by n whole power 1 plus nC2 1 power n minus 2 into 1 by n whole square plus nC3 1 power n minus 3 into 1 by n whole cube and so on when I expand this I will get nC0 to be 1, 1 power n is again 1 into 1 plus nC1 is 1 plus again 1 to the n minus 1 becomes 1 into 1 nC1 becomes n into 1 by n plus nC2 can be written as n into n minus 1 by 2. I have written this by simplifying nC2 into 1 by n cube and so on. This becomes 1 plus 1 the ends get canceled here plus I'll cancel 1n from the denominator and the numerator and what remains is n minus 2 by 2 into n and now simplifying the next term we get n into n minus 1 into n minus 2 by 3 factorial into 1 by n cube plus so on.

Now this becomes 1 plus 1 plus let me take a n common from the numerator here and this becomes n into 1 minus 1 by n by 2 into n plus we have n here and n cube here so after simplification what remains is n minus 1 into n minus 2 by n square into 3 factorial and so on. Now this one I'll write it as 0 factorial and this I will write it as 1 by 1 factorial plus. You will understand why I'm writing like this, plus I cancel these ends here and I get 1 minus 1 by n by 2 is same as 2 factorial and hence I'll write this as 2 factorial plus again as I did earlier I'll take out ends common in these two terms so I will get n into 1 minus 1 by n into n into n1 minus 2 by n. I hope the step was clear, by n square into 3 factorial plus so on.

Now I'll cancel these ends with n square and what remains is zero factorial as we have seen earlier is one so it does not make a difference if I write 1 by 0 factorial plus 1 by 1 factorial plus 1 minus 2 by n by 2 factorial plus 1 minus 1 by n into 1 minus 2 by n by 3 factorial and so on. Now what happens to these terms when n becomes sufficiently large? What I mean by sufficiently large is we have to choose n to be a very large number. In case n happens to be a very large number then 1 by n or 2 by n or any small number by n becomes very close to 0 and hence this term can be written as 1 by 0 factorial plus 1 by 1 factorial plus I am approximating this 2 by n to be a number very small very close to 0 and hence this becomes 1 by 2 factorial.

I'm neglecting the terms which have denominator as n and hence in all the further terms what will I get? It will become 1 by 3 factorial plus 1 by 4 factorial and so on. So this becomes summation 1 by K factorial K from 0 to infinity. Now this is called the famous Euler's number. I'm sure you must have heard of e and this we have arrived at this by starting from expanding 1 plus 1 by n whole to the n by using binomial theorem. So this was one application of binomial theorem.

Now let us see the next one. The derivative of X to the n involves binomial theorem. Now derivative is a concept from calculus and I am talking of binomial theorem. So how is it related? The proof involves certain technicalities from calculus and I leave it to you guys to go and check it. I am not giving the proof of the derivative of X to the n here but let me state it. The derivative of X to the n is n into X to the power n minus 1 and this involves the usage of binomial theorem. Let us move on to the next one. We know that binomial theorem states that x plus y whole to the n is summation K from 0 to n, nCK into x bar n minus K in the y power K. What happens when I plug in x and y as 1? So it becomes 1 plus 1 whole power n equals summation K from 0 to n nCK. So in place of x and you I am writing it as 1 and hence this becomes 1 to the n minus K into 1 to the K. Now you must be wondering why I am doing this because I'm just plugging in 1 for x and y but let me tell you this is 2 power n equals summation K from 0 to n nCK. So did you observe what happened? We have as a summation only the binomial coefficients and the sum of all these binomial coefficients turns out to be 2 power n. What does this actually mean? If we have n objects each time we choose K objects from these n objects like I'm choosing 0 from n objects, I'm choosing one object from n objects, two objects from n objects and so on and I add up all this so what it becomes, it results in 2 power n. Did you see the beautiful connection between binomial theorem and choosing objects from n objects and 2 power n.

So these were a few applications of binomial theorem. Next we'll move on to the generalization of binomial theorem and solve a lot of problems.

IIT Madras Production

Funded by

Department of Higher Education

Ministry of Human Resource Development

Government of India

www.nptel.co.in