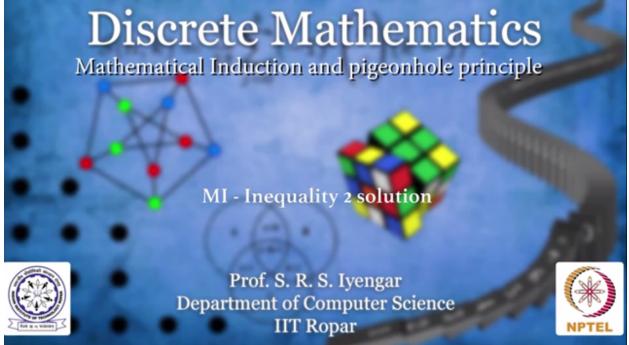
NPTEL NPTEL ONLINE COURSE

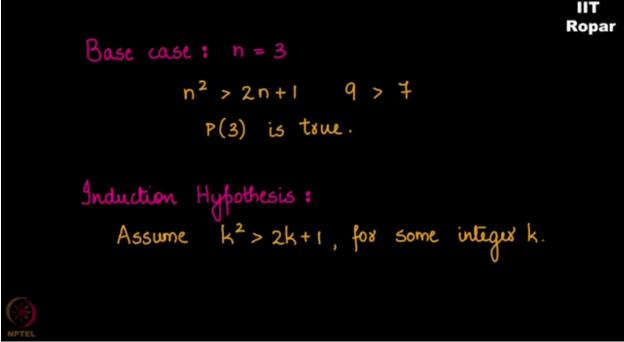
Discrete Mathematics Mathematical Induction and pigeonhole principle

MI - Inequality 2 solution

Prof. S. R. S. Iyengar Department of Computer Science IIT Ropar



So I stated the problem in the earlier video. Let me prove it using induction. What is the base case? The base case starts with n = 3 and hence we have n^2 greater than 2n+1 where n=3 will be 9 greater than 7 and hence the basis step is true.



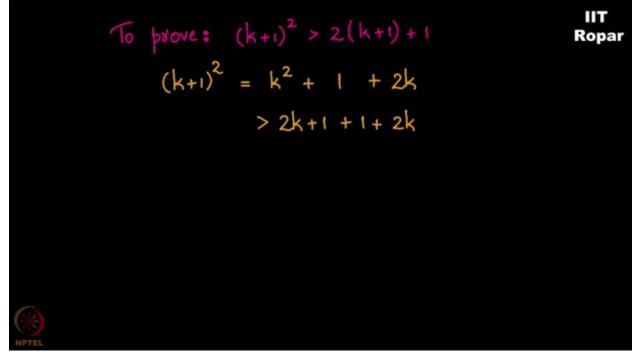
Let me move on to Induction Hypothesis. What do I assume? I assume that k^2 greater than 2k+1 for some integer k, positive integer k should be. So this is the Induction Hypothesis.

Now if this is true that if k^2 is greater than 2k+1, then I should prove that $(k+1)^2$ is greater than 2(k+1)+1.



So let me take $(k+1)^2$. $(k+1)^2$ using the identity $(a+b)^2$ goes like this: k^2+2k+1 , right? Or I can also just rearrange them and write it as k^2+1+2k .

Now observe something very carefully. What can I write k^2 to be as? From the hypothesis, it is k^2 is greater than 2k+1. Now I write it as this is greater than 2k+1+1+2k. 1+2k remains as it is.



Now this expression is equal to, if you remember, I had explained when we write an equal to sign and when we write greater than sign. I am not going to touch greater than here. It is not affecting the inequality. I am just telling 2k+1+1+2k, this is equal to 2k+2+2k, but the inequality remains as it is. Clear?

To prove:
$$(k+1)^2 > 2(k+1)+1$$

 $(k+1)^2 = k^2 + 1 + 2k$
 $> 2k+1 + 1 + 2k$
 $= 2k + 2 + 2k$ $k = 3$

Now where did we start from? We started from k greater than or equal to 3. Right? That's how we had started as the basis step if you remember.

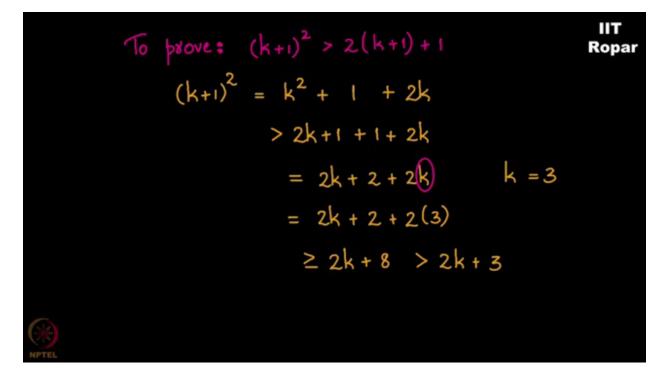
Now let me just substitute 3 here. Why am I doing this? You will get to know later. I'm going to substitute 3 for this k only. Again why? You will understand in the next few steps.

Now 2k+2+2(3), 2 into 3 is 6 plus 2 is 8. Now k can take any value greater than 3 and hence this is greater than or equal to 2k+8.

To prove: $(k+1)^2 > 2(k+1) + 1$		IIT Ropar
$(k+1)^2 = k^2 + 1 + 2k$		
> 2k+1+1+2k		
= 2k + 2 + 2k	k =3	
= 2k + 2 + 2(3)		
$\geq 2k + 8$		
NPTEL		

This is the most subtle part of this theorem. You might need to take some time for understanding this portion. This is 2k+8. Now, and this is greater than, strictly greater than 2k+3.

Now you can ask me why did you write 3? You can also write 4 or 5. Yes, but we are concerned only about 3 here. Just observe the proof. So 2k+8, this is greater than 2k+3.

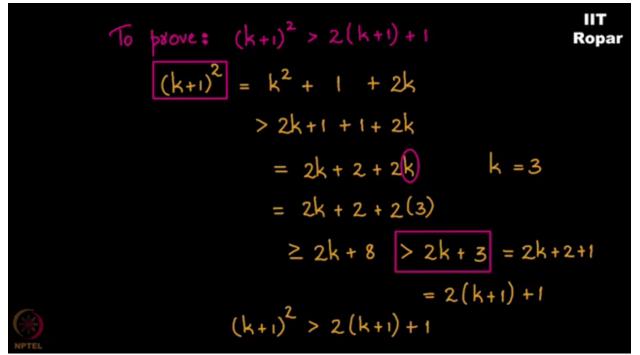


Now what is the inequality? What is the status of the inequality? $k^{2}+1+2k$ is greater than 2k+3. We have – we are right now in this position. Now this can be written as 2k+2+1. I am just expanding 3 as 2+1.

To prove:
$$(k+1)^2 > 2(k+1)+1$$

 $(k+1)^2 = k^2 + 1 + 2k$
 $> 2k+1 + 1 + 2k$
 $= 2k + 2 + 2k$
 $k = 3$
 $= 2k + 2 + 2(3)$
 $\ge 2k + 8 > 2k + 3 = 2k + 2 + 1$

Now I'm going to take out 2 common here and this step is equal to 2(k+1), (k+1) in bracket plus 1. So now what is the status of inequality? It is k^2+1+2k is strictly greater than 2(k+1)+1. So $(k+1)^2$ is greater than 2(k+1)+1. We have reached the end of the proof.



Take some time to understand each line in the proof. You might need to read between the lines and understand the proof.

IIT Madras Production

Founded by Department of Higher Education Ministry of Human Resource Development Government of India

www.nptel.iitm.ac.in

Copyright Reserved