NPTEL NPTEL ONLINE COURSE Discrete Mathematics Relations Cartesian Product With Prof. S. R. S. Iyengar Department of Computer Science IIT Ropar

So, formally speaking, if we had the set S with not just five elements but let's say, in general, n elements al to a n, S x S will have the following elements. From $\{(a_1, a_1) (a_1, a_2), \dots, (a_{n-1}, a_n), (a_n, a_n)\}$. So you'll have total number of elements in S x S will be n² elements.

Our question is, what is the total possible subsets of this S x S. So before that, we all know that in general when you take a set A, comprising of some, let's say, n elements, alpha 1 alpha 2 up to -- let's not say n, let's say m elements. We know the total number of subsets of this. It's called the power set, if you remember. Total possible subsets is -- you basically write all possible sets here, all possible subsets of A here. The number of elements in this power set will be 2^{m} , correct.

The result is straightforward. You can map this to all possible binary numbers of length m. There are 2^m of them. Every binary number represents whether you pick an element from the set A or not, right. We have discussed this before. It's a straightforward observation.

Now the total number of subsets of S x S will simply be, 2 to the power of the number of elements in S x S, which is 2^{n^2} . Why? Because every possible subset of S x S is a valid relation, and hence, there are 2^{n^2} o valid relations, and that is the number of total number of relations on S.

IIT Madras Production

Founded by Department of Higher Education Ministry of Human Resource Development Government of India <u>www.nptel.iitm.ac.in</u> Copyright Reserved