
RECURSION 05

Alright guys hope you had learnt about the powerful technique of recursion, i hope you
remember search algorithm that you had studied previously in your previous weeks namely
the binary search, let me give you a very quick overview of what is does? It is basically how
we search for in a dictionary or in a telephone directory something like that. Why did i take
dictionary or telephone directory? Because the words or the contents in the directory are
sorted or that is arranged in some ascending order they are arranged in the alphabetical order
so that is why we can apply this technique so binary search basically calls for a sorted list,
you want a list that is arranged in some specific order, either ascending or descending it calls
for list arranged in their order and in that list you want to see whether a particular number is
present in the list or not whether a particular item is present in the list or not, so what would
you do? You would check the middle of the list, if that is your required item you are done else
you check if it is less than your required number or greater than your required number,
accordingly you will branch on to the left half of the list or the right half of the list. So this is
how your binary search works you have seen a iterative version of binary search in your
previous weeks i guess so that is easier but still an easier thing like how i had given you an
intuitive version of binary search like you have to scan into the left half and you have to scan
into the right half something like that i had given you an intuitive version so such a intuitive
thing can be easily translated to code when you use this technique of recursion so let us see
how we can use recursion through simplify the process of writing code for binary search. Let
me say i will define binary search, binary search define binary search for this i need list or
you can call it list l i need a list l, some element x which we want to find, you were
processing it by sing the index values, you would have seen that till now you may be familiar
but still i am telling you a very quick recap, indexes in computers starts from zero human
start counting from one cut computers start counting from zero so the counting starts from
zero so if your list has five elements the counting would be done as zero one two three four,
zeroth element, first element, second element, third element, fourth element this is how your
computer counts so you have to give the starting index and the ending index these are
required for your binary search right, so initially your starting index is zero ending index is
actual end of your list so that is entire list then as you scan the middle element you keep
discarding one half of the list and just keep searching in the other half so that time it will
change so these are the Para things you need to do binary search, you need a list you need the
element x which you want to search you need a start and end index of the list where you want
that is you won’t search the entire list all the time, you will search parts of list by discarding
the unnecessary half this is how your binary search works so we needed this four parameters
ok let me define as i had said recursion requires base case, what is the base case? When we
have only one element left in our list, if just one element is left in our list then we have to see
that particular element if that is the required element then you say yes required element has
been found else you say element is not found ok so for element not found i am going to return
value minus one i am going to assume that my list has all positive values and minus is not the
value in my list also i am going to return the position of the element, i am not going to return

the element even if have negative element i don’t mind let’s find i am going to return the
binary search basically here i am going to return the position in which the element is present
at the list, so that is what i am going to return so position starts from zero right? so if the
element is not found i will return minus one that is the element is found somewhere outside
the list, that’s what basically i mean so i will return minus one in case if it is not found so
base case is the base case is one element just one element in the list that is the base case so if
there is just one element in the list how would you start and end, they would be equal, start
and end will be the same value because there is only one element that is the start as well that
is the end so i will start using the start and end indices, if start is equal to end i would check if
l of start or end you can use anything inter change of it because they both are equal in this
case, if that are equal to your required element x you return the start value, that is return that
position hence there is just one element say suppose assume you have just one element ten in
your list and what you want to search is fifty, fifty is not present in the list and it is having
only one element then you have to say element not found so for that i said the code i am
going to use encoding i am going to use is minus one so i will return ,minus one, element
fifty is present in the minus oneth position meaning that it is not present ok, so i will return
minus one in that case ok so this is the base case if the base case is not true then else that is
there are more elements in a list, in that case you have to find the middle element and you
have to discard the unnecessary half and search through the required half, you have to split
the array into halves and search through the required half that is what you have to do right? so
divide the divide the array into halves this thing we have to do for that we need to find the
mid position, mid position is nothing but start plus end here i have to put up bracket because i
need to calculate the sum first then i have to divide by two this is the midpoint right this is
intuitive start and so here will be your start and here will be your end the midpoint will be
start plus end divide by two this will be your midpoint when you divide there is a possibility
that you can get some value that is floating point may be seven by two three point five, what
is the meaning for position three point five? Either you have to take it to three or to four so
for that we are using a functionality int so we are type casting it to integer because position is
a integer we want it in a integer that is first position second position third position this is what
we want, we don’t want three point five position so will use int so it will have its own
conversion it will take it to three point five to three or four maybe we can run here and check
int of three point five let me give three so it is taking to floor functionality, floor is nothing
but the integer that is closest to it the greatest value of the integer that is closest to it if we
take the number line three point five is somewhere here three is here and four is here it is
going to the left side so int functionality is going to the left side and taking the greatest
integer two one everything is present in the left but the greatest in the left the integer is three
so three is returned as the answer. So that will be taken here let me start a new console better
because for this program new console ok so this is the midpoint we have computed, we have
to check mid element is the required element so if the if l of mid is equal to x that is the case
we have done we have found the element return the mid element else i have to check if it is
greater or less so i would say l of mid is greater than x means you have a sorted list and the
middle element is greater than your required element so where should you search, definitely
your element will not be in your right half you can discard the right half and you need to
search the left half so your array would now shrink from the starting position to mid minus

one so mid position didn’t have the element also there is no chance that it will be after mid so
it would be before mid so we need to shrink the array up till mid minus one position that is
one position before the mid till that we need to shrink the array, that is we will do as return
the result of binary search on the same list for the same element x start position is not change
see because we are we have to check the left half of the array so the start position is the same
but the end position is not the precious end position, previously we have the bigger list we
want to split it so the end is mid minus one why mid minus one? Because at mid position we
had checked, at mid position didn’t contain the element x so an x is the smaller value that is x
is l of mid is greater than x meaning that x is lesser than l of mid so x being less than the mid
value will be present in the left half so from starting position till one position before mid
whatever is the array left search in that array and return the answer if what we mean, see it is
really intuitive see this is the left half, this is the left half than using of iterative method
recursion is easy you can translate your intuition into code very easily if you use the recursive
ideology ok so this is the recursive way to call the left half of the array, call the procedure on
the left half of the array search the left half else you have to search the right half, so for the
right half end value is the same but starting point is different right? we had searched till mid
we didn’t find it at the position mid and the value x is greater than the mid value so it would
be present from one anywhere from one position after mid up till the actual end point right?
so your start value will change or i would say return binary search result on l, x mid plus one
and end, the modify starting point is mid plus one till mid position we had checked there was
no element that is why we are checking the path after the midpoint, here we are checking the
path after the midpoint, here we are checking the path before the midpoint that is the left half
and the right half whatever we had it intuitively in our mind we are translating it to code very
easily so this is the power of the recursion so it would recursively keep computing and we
will get the answer so you can take any example, i had given you an example of how
recursion works in the factorial screen cast similar to that you take a list you try applying
binary search on it, you try how recursion works, you would have understood how recursion
works so this particular search the bigger list depends on the value of searching on the
smaller list so whatever the result you get after searching on smaller list will be translated
back and will be returned as the result for searching on a bigger list this is how your binary
search in the recursive manner so we had defined binary search now we have to used it, right?
so let me give a random list you can also change it with your version you ask the user to input
how many numbers he want to input, you input that many number of numbers or till he
presses some keys you keep getting input you can by now i guess you all are familiar with the
various conditional construes using that you can modify the code as you wish, now my motto
is to demonstrate binary search so i would just give a smaller list twenty forty five sixty
seventy ninety this is my list i have given please note that i have given a list in the sorted
order, if it is not sorted you have to apply sorting first then after you get the sorted list then
you have pass the sorted list to the binary search, binary search expects the sorted list so that
is very important please make a note of it, so this is my list and i will input the x value from
the user ok, let me input the value of x from the user and i have to typecast the input in my
Mac machine so i am type casting you please follow as per your machine dependency input
enter search key search key i would say that is what number you want to search, i would
input the search key from the user, that is my x so binary search will return the index and so

let me store it as index is equal to binary search on the list l search key x starting position is
always zero for the bigger list initially we start with the entire list zero and the end position is
zero to length minus one this is the five element list so it will be four so let me generalise it
so let me say length of l this will give the length of the list that is how many elements are
present in a list will be return by this length of the list minus one this is the ending index so
you initially start of your search with this particular index this is the suppose my search key is
eighty this will be the entire key is passed so it would find the mid value sixty it is righty is
greater than sixty so this half is not needed this is neglected and this particular thing will be
executed and seventy ninety this will be my new list in this list i will search for my key
seventy and ninety this will be taken as the mid value as we have seen that floor value is
taken so this value is taken as mid value, eighty is still greater than seventy so it will skip to
the right half so here there is only one element ninety so this case would be executed ninety is
not equal to eighty so it will return minus five so i will come to know that this thing is not
present so something like that it works you can trace through it i hope now you are clear with
how recursion works and you are clear with the binary search concept too so you can
understand it you all that you need is take a pen and paper and trace through how some
example work, that is what is required with that you can easily understand the concept ok so
it will return the index where the element is present in the list ok i have got the index so if i
just say the index this is not enough for a normal user for us element sixty is present at the
third position if i say two they will say what is this computers doesn’t know even this so we
have to translate it into a human friendly format right, so basically what is that we have to do,
we have to add one, one is represented as zero, the index in second position is index one,
third position is index two so basically whatever is the index it returns add one to it and
display it to the user and if it returns minus one, you should not say it is present in the zero
you should say that element is not found, print appropriate message so first we will give a
check that if index is equal to minus one in that case you should print x value not found ok x
value is not found ok else you should print, that is minus one is the not the case that you
should print that x value is found at found at position index plus one, computers counting
system and the humans counting system differ by one that’s why we are adding one and
display ok so this is how you have done, let me save the code i hope you are clear with it we
have a list we input a search key this you can even modify it to getting the input for the list
element is from the user, you have to sort the list please note that you have to send a sorted
list for binary search to occur, so you have to sort that list input a search key then you apply
binary search on it how it works? If there is just one element in the list it will check if that
element is the required x element x, if it is the case it will return the index else it will return
minus one so whenever the element is not found it will return minus one that is how we have
encoded it. In case if the list have more than one element what it does is, it will find the mid
element and based on the mid element since the array is sorted it will discard one of the
halves if the element required is exactly the mid element we are done if it is less than the mid
element you have to search the left half so it will discard the right half it will search only the
left half if it is greater you have to search only the right half it will discard the left half so for
this to understand this really well i would suggest that you take a twenty element list basically
and you try tracing it on paper, basically to understand this clearly you should work out a lot
on papers and less on computers, computers can do this in fraction of second but humans to

understand this strategy it requires some practice so please take a pen and paper take some
twenty element list randomly you sort it maybe for that you can use the computers as well
because sorting a twenty element list may take some time, so you can use the computer as
well you sort it or you take the sorted list of the twenty elements you randomly give some
search element you give some element which is present in the list as well as some element
which is not present in the list try to understand how the various runs of the programs are and
you will really understand the process very easily after practice all that need is needed is
practice please do practice practice practice that’s it now let us run this program let me run it
ok it is asking me to enter a search key let me enter eighty, eighty not found perfect! Ok now
let me enter ninety, let me enter ninety, ninety is found at position five perfect. We got it
when i entered eighty, eighty not found at this list so it’s says eighty not found and when you
enter ninety, ninety is found here it is found at position five so it says ninety is found at
position five so it works, i would recommend that please you take some pen and paper and
work through the various example, work through list with large elements as well here just
that i wanted to demonstrate the recursion technique i had taken a smaller list and already
sorted list, you try different things unsorted list you sort it then apply binary search at huge
list, a list where you get somewhere it is if it is a twenty element list try to find the sixth
seventh element try to find the eighteenth element try to find something exactly near middle
or near the middle something like that, you try various possibilities you will understand
actually what is logic of binary search how it works, all that is needed is practice with pen
and paper. Keep practicing thanks for watching have a nice day.

