
Information security - IV
Prof. V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 60
Recovering from Exception

(Refer Slide Time: 00:16)

So, now we will see how the attack can happen, let us say there is a parent process which

actually forks a child process. Now this is the pace table for the entire system so these

are all processed pages, and these are all OS pages. Now what will this child process to,

this child process will access some part of this OS page ok. Let us say it is accessing 1

byte of this OS page, so I can say that move into the register e b x, then I say some, let us

say this is ks location or I can even say instead of doing this I want only 1 byte, I can say

move b l b l is in Intel’s 8 bit register and then say byte k ok

So, from this k’s location become obviously this is going to give us an exception, but that

exception will be detected only after this b l, basically gets a value right. So, what is this

subsequent instruction, it will do, it will just you know. So, now after this exception has

come right, so this one; so after this exception has come for this after the exception has

come that there are going to be some instructions 1 2 3.



(Refer Slide Time: 02:11)

That are following all that these instructions have done will get annulled right so, but let

us say there are some instructions here these three these set of instructions will leak the

value of this bl to the parent process.

So,  what  will  happen is,  and when it  will  leak  between the time,  where there is  an

exception and between the time where there is an exception and between the time, where

the value is stored into b l and then here the exception is going to rise. So, say let us at

time t 1 b l gets the value at time t 1 plus delta this is where exception is raised. The

moment exception is raised, whatever I 1 I 2 I 3 is done is gone. So, between this time

interval  t,  this delta  time interval,  these set of instructions whatever is following this

should somehow leak the value of bl to the parent process right.

Now, what will happen is, once an exception comes here, essentially the child will be

terminated. So, once this exception is raised child will be terminated, at that point the

parent  process  will  get  the  control  right,  and  it  will  the  parent  process  will  not  do

anything about this termination let it go, but it has got the value of bl. So, then what this

parent process, will keep on forking multiple child process and in each time, it can get 1

byte or whatever byte and it will get leak information and then essentially the entire

kernel dump can be brought out.

So, this is the basic methodology that is followed in meltdown. The reason again is that

there  is  out  of  order  execution.  If  it  was  in  order  execution  1  after  another,  this



instruction would have come, this, once this instruction finishes then only if I say, I 1 can

execute, I do not see those, you know if you are seen, if you remember in the previous

session we have seen 1 blue bus right, which is feeding into all the execution unit there

was no out of order execution at all.

And obviously, I 1 I 2 I 3 will never execute before this move finishes, but we want

optima, we want performance and so what we have done, we have allowed out of order

(Refer Time: 04:50) and that is a micro architectural decision that we have taken, and

because of that what happens, before I even realize that this is an unauthorized access,

there  are  other  instructions  which  will  basically  execute,  assuming  this  is  a  correct

operation. This is also called speculative execution. Since I speculate that this move will

work correctly and I go and execute another instruction.

Because of that what happens some data, these instructions will have access to that b l

which is the confidential data. And then now there is the intelligence come here, how I

leaked that b l to the parent process, because once the exception is raised, all the things

that we have done that I have read b l, but that as a I 1 or I 2 or I 3 I know the value of b

l, but the moment that exception happens at this instruction, all these gets automatically

annulled by the hardware. So, in that small time window I need to leak the value of b l to

this right.

So, now the problem is that the operating system believed that nobody can touch the OS

memory at all right. Now because of the optimization of the micro architecture level, it

did not know about the micro optimization with the micro architecture level, because of

the optimization that we have done at the micro architecture level, what has happened.

There is a small window of time where this data could be leaked to another instruction, it

is not just it has gone. Now, so till now so that is that is the you know the break.

Now, some  other  instructions  got  it  so  what,  because  once  the  exception  is  raised

everything will  be erased, but then those instructions can do something intelligent to

basically send back the value to the parent process, and that is where the challenge, the

third challenge comes ok. So, we had an operating system assumption that got violated

because of a micro architecture driven optimization. Now that micro architecture even

thought right ok, it is fine if an exception, when they were actually framing this out of

order execution. Do you think they would not have taught about? Yes, they would have



taught about it, completely, saying that anyway, let it know, let it get the value of e b x e

b  l  here  b  l  here  let  the  other  instructions,  anyway  when  the  exception  is  raised

everything is going to annul what is issue. These instructions actually exploit a circuit

level phenomena namely it is a cache organization which is a circuit level phenomena to

basically leak the information

So, there is a side channel, it is called basically a side channel, we will we will see how it

is going to happen. So, that is why we have been telling that there is an operating system

concept involved that got broken, there is an micro architectural level concept involved it

got broken, and then finally, there is a circuit level concept which also enabled this whole

attack. So, this is three layers in their operating system, the micro architecture and the

circuit level jointly trying to get this melt down in place. So, this is our attack

Now, what needs to be explained now is, what are these three, how these three, two or

three or whatever how are these instructions, we call them the literature currently calls

them as transient instructions, how are these three instructions going to leak their value

to the parent process. Now this is a basically a, this is a parent child orchestration that

needs to happen. Now what will the parent do. Now let us understand. Now we have

cache, now I am trying to access memory, if it is a cache hit, I say I get it in 1 unit of

time. If it is a cache miss, then I take x units of time, several say probably if depending

upon the cache org memory organization can be 100 units of time, so if there is a cache

miss.

So, and there are  performance counters available  in  all  these architecture which will

measure the memory access time, you can say whether there is a cache it or not ok. So,

that is very important right. So, what we can do what the child process can do is suppose

b l. Suppose have given say so this bl is 8 bits, so 8 is 2 per 8 is 256 correct. I could have

256 cache lines right, 256 blocks. 

So, let us say every caches is some bytes say some 32 bytes or 64 bytes, let us say every

cache line is 64 bytes, so 64 is 8, so let me say that 256 into 8 is 1024 right 2 2048 right.

So, so let us go to the next, I will just explain how the cache is now organized and that

will give us lot more insight into right.



(Refer Slide Time: 10:36)

Now, the cache as say 256 lines; so let me say line zero line 1 line two line 255. Suppose

in my b l I have read say 8 I go, and so let me say that so I i i know, I now go and access

the line and the address 8 into 6 each is 64 bytes cache line. So, I go and access 8 into 64.

The moment I access 8 into 64, just I access 18 to 64 then that line elate will now be

populated right. 

So,  as  a  child  process  suppose  I  am  reading  from  some  kernel  I  get  the  value  8,

immediately I will go and just access, so go read or write something into 8 into 64 right

into an address which is  8 into 64,  then automatically  that particular  cache line gets

populated right. Similarly suppose I got, instead of 8 I got 25 I will go and read 25 into

64, so the l 25 will basically get populated.

So, what I can do is as a parent process, I can execute a simple code which will flush all

the cache lines, it is very easy to do that; I can flush all the cache lines. So, when the

child starts executing all  the cache lines are empty. Now this child process basically

reads say 8, so it goes and populates only the eighth line, and then what happens then the

exception got raised, everything is annulled, but please note that the fact that there was

something updated in the cache cannot be annulled right.

There is something updated in the cache cannot be annulled, so what will happen is that,

when I go back to the process main process, the main process will do several things. The

main process will start accessing l 0 to l 2551 by 1 it will access, and that it will go and



find out if there is some data entered, there is a hit or not right. So l 0 to l, suppose l 8

was there l 0 to l 7 and l 9 to l 2 25, it will always be miss, but l 8 it will find something

some access there right.

So, now it will know ok, the value that was read by the child process is 8, so this is how

the basic information is leaked. So, let us go back to the previous now. So, this is the

parent process what does the parent process da do, it will flush the pipe, flush the cache

completely  and  it  will  fork  a  child.  What  will  the  child  do.  It  will  go  and  access

something in the kernel space and subsequently there will be an instruction, which will,

if so it has access to say some 8 it will go and write into the eighth cache line, and then

now some exception will come, the registers everything will be erased, but 1 thing what

has happened to the cache will remain exactly right.

So, now what, now the parent process, when there is an exception the child actually gets

killed, the parent will not do anything fine, it  will immediately start accessing all the

lines from 0 to 255, it does. First it has flushed everything so nothing will be that, except

at that eighth, so that it will take the value, again it will force process, now it will read

that b l, now it will write that. 

So, byte by byte I can re recover and essentially the entire kernel dump I can get it. So, I

can read from k starting from this point I am marking it in green here, staked starting

from this point to this point byte I can read every time I will fork a child, I will get the

value fork a child, get a value for a child and I can complete the entire stop. So, this is

how the meltdown attack has taken place. So, I will just summarize this whole thing with

this particular



(Refer Slide Time: 15:27)

What happens is the parent process as I told you will spawn a child which launches the

attack, the child lances the attack. What will the child do? It will access the voice region

and it will leg leak the data to e b x then it will encounter an exception, then what we will

do, the parent process will take over, the parent can kill the child on an exception and it

will continue executing. 

Now the question was that how to transfer the leaked data from the child process to the

parent process. So one very interesting thing is, the child process cannot write a 1 bit

secret data into register e b x to P 1 to the parent process, since exception will clear it,

whatever you do, so when the exception comes whatever the three transient instructions

dead that will be cleared.



(Refer Slide Time: 15:58)

 So, I the pay child process cannot pass the information to the parent process, basically

using  a  register,  because  whatever  this  child  process  does  after  that  exception.  Any

instruction  the  child  process  executes  after  that  exception,  instruction  causing  the

exception that will be annulled.

So, what can P 1 and the P 2 do? P 1 P 1 parent and P 1 child what it can do? they will

agree that they, if the secret. So, suppose I am reading bit by bit if the secret is 1, then P 1

must  write  to  location  thousand,  else  it  if  it  is  zero it  should write  some value  to  a

location two thousands, after effectively P 1 P 1 parent and the P 1 child I have shared

the secrets through this covered channel, but what will happen is.



(Refer Slide Time: 16:57)

So, this 1 bit by bit is difficult, let us say byte by byte how will I do? P 1 writes to page

zero, it is 4 k b size if the data is in e b x is zero, P 1 child rights to say page 84 if the

data and e b x is 84. Instead I could have 256 pages I can write to 1 of these pages. So,

the P 1 child can leak 8 bits of data at a time to its parent process P 1 p. now all these

rights also will get annulled, also states from P 1 c to P and P will get discarded because

once that exception comes the hardware will discard all these weights, so again I cannot

go back.

(Refer Slide Time: 17:40)



So, so the next challenge essentially comes, this is the idea of the cache, so what will the

parent process do?

(Refer Slide Time: 17:50)

 It will first flush everything and give you a fresh cache to this fellow. Now what will the

fellow do, when it when it sees a particular value, it will go and access that particular

cache, it will not do anything just access that cache. Now after that the exception will

come then that parent process again starts and what will the parent process do. So, when

I do a fla, this is called a flush and reload attack. 

Now, the parent process first ensures that the cache does not have any stale data at all.

Now the victim actually writes to a cache line in the cache while executing, now the

attacker accesses all the cache lines again and only 1 cache line will result in a cache hit,

all the other things would be thing and so we will.

So, this is this is something very interesting and that is where the I will not actually write

the data, but I will just get a cache hit there. So, then I know that this is a, this is the

exact value, because the line number where the hit has happened is essentially equal to

the value I have read, so by this I can get the value. 

And so I repeatedly keep spawning child processes and basically get out of them. So, to

conclude I think 1 of the basic theory that we have been promoting at IIT Madras on



these, we say that security is not an isolated phenomena, it spawns across all layers, as

we have been talking of in our first slide of my first I S 1 course.

(Refer Slide Time: 19:26)

The entire security spawns across these file errors. Has you see on the screen now and

any security vulnerability is not restricted to 1 layer, but it is an act of several layers

getting together and trying to get out that vulnerability. All the vulnerabilities that we

have seen in the past also has some level of you know misunderstanding between the

application and the operating systems right, and some amount of hardware support which

was not used to, but this is the first attack which has come up in come up and hopefully

we do not have such similar  attacks in the future, which has exploited certain micro

architecture and circuit level concept.

Of course, at the circuit level there were lot, there is lot of literature, there is a lot of

work that is happening on the site channel attacks basically to leak information, but this

attack is a different class of its word, where it actually used the cache. It actually used

out of order and then it also used the fact that the operating system need to have a single

page table, which has the both the OS pages and the process pages, and so that is how

this three layers have got together to melt down the, in our security feature.

So,  this  is  a  very important  eye  opener  especially  for  hardware  architects, operating

system  developers, specifically  virtualization  developers  people  who  rely  on  what

children, which is virtual virtualization, basically the v ms. Those are the people who



need to worry about  this  leaking of secret  from 1 virtual  machine to another  virtual

machine. Each virtual machine per says a process and even on network routers where we

configure say V P Ns multiple V P Ns are there, and 1 V P N should not talk to another V

P N and this isolation we are achieving and these isolations are logical.

So,  people  have  to  carefully  start  looking  into  those  definitions  and  see  how those

software has written, and we have to look at whether there are no vulnerabilities at that

stage. So, these are something very interesting and from an academic point of view, this

a brilliant attack, but you know from a commercial point of view, it is really a big jolt to

many. So, with this what we have done in this I S 4 course, is to get you big detail about

all the whole we have trying to give you a holistic picture.

So, what we will do in the I S 5 course, that will be in December 2018 or January 2019,

we  will  concentrate  more  on  the  hardware  side  on  the  digital  hardware  and  micro

architecture, and we will be talking about some of the recent hardware developments that

have basically helped in trying to get out of many of these security issues. Hopefully we

will  have a much broader understanding of this  type of architectural  interventions  to

ensuring security, and we can give a very nice sum up, finally, end up this course.

Please  note  that  the  hardware  the  digital  hardware  as  you  see  in  the  screen  is  the

foundation and if the digital hardware is weak, whatever good things you do in the top

can be leaked. So, it is very important that digital hardware and the micro programming

level, the micro architecture has to be extremely strong and should have lot of security

orientation into it. So, when we decide, when we design a micro architecture, when we

design a circuit we should have a lot of security. The thought process of the designer

should be no more security oriented.

What is that is something which we need to basically talk about debate and that will be

part of our information security 5 courses. I wish you all the best in this course and I

hope many of you take the exam and get yourself certified. I also thank the information

security education awareness program of the Government of India through the Ministry

of  Information Technology for actually enabling us to. You know, make these course

materials and giving us the platform, where we can basically develop this material. 



And of course, the MOOC platform of IIT Madras has enabled us to deliver this course

and reach many of you. I am sure it is going to be a very very important exercise for all

of us to see that we have where very safe and secure digital world to live in.

Thank you very much.


