
Information security - IV
Prof. Kamakoti V

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Lecture - 57
Introduction to Meltdown Attack

So, one of the primary philosophy that we had been following right from the IS 1 course

Information Security 1, 2, 3, and currently the 4 is that the theme has been secure

systems engineering rather than looking at security of a particular part in a isolation.

What we meant by secure systems engineering is that security cannot be viewed in

isolation say at a software layer.

Thus if you say that I am making a secure software there are lot of assumptions that we

make before we say the that this is a secure software, or if I say I am making a secure

hardware again there are lot of assumptions that somebody is going to write the software

would write a secure software.

So, security span across all the domains you need to have security at the hardware digital

level, otherwise that could be things like site channel attacks where people can say

measure for example, I have a secrete key ah, but my secures consumes lot of power

when it is processing a 0 when compared to when it is processing a 1, 1; did not know

the secrete just keep measuring the power at the underline circuit.

If it consumes lot of power then we says the key that is processing the bit that is

processing is 1, if it is consuming less then it can say that the bit it processing is zero. So,

now, by this if it starts profiling the power over a period of time then basically it can find

out whether what is key like it can be 1 or 0, or 1010.

So, the entire key can be leaked without an actually having access to the key and this is

called site channel analysis I do not actually look at the key, but I I study a parameter

which varies because of the variations the ones and zeros in the key and by that I could

actually go and find what the key is. So, this is the circuit level vulnerability on top of it

there is there is a micro architecture, on top of it there is a operating system. Then there

are system programs like compiler as a development environments, and on top of it there

is an application software.

So, we all these 5 layers one need to have a overall complete outlook before we go and

certify a system as a secure systems and this is one philosophy that we have been talking

of. So, I will just start of it with one of the slide that I put in information security 1; 3e

years before right.

(Refer Slide Time: 02:41)

So, so these are the 5 layers as a digital hardware there is a microprogramming then there

is a operating system, then there is a assembly language level or your system

programming level, and then there is a high level programming. Now people who work

at one level do not bother about the other right.

So, if I am working as a at an application level I do not know which compiler is going to

compile which operating system is going to execute, I just write a program and then

assume that other things will be taken care of by the other layers. Similarly if I am

working at the operating system I really do not know what the hardware is as long as

certain interfaces are properly set not understanding what is happening in the other layer

being ignorant of the other layer you start writing programs assuming that those layers

will do what it is supposed to do which may not be the case. And this ignorance is

essentially where vulnerabilities treatment where the security loop holes come up.

And this is what we are told at that point of time when we discussed this in IS the

information security 1 course we did not have a case study that will span across of all the

5 things. Now the current meltdown that is reported widely in the literature now we can

basically see one attack which spans across at least 3 layers namely the operating system

the microprogramming and the hardware layer.

So, there is something that is happening to the cache, that something that is happening to

out of order execution that is a micro architecture and this is because the operating

system has assumed something and so the bottom 3 layers there is an attack and you

need to understand everything about every layer large lot of details about every layer, to

basically appreciate why meltdown has come up.

So, this is one very important case study that every security engineer should go through.

So, that is aware he or she is aware of how things can happen and so hence when you try

to propose a secure solution what is it that you need have in your mind this is a very

interesting case study and that is why we have introduced this as a part of this IS 4

course.

Every layer has to be a virtual machine; that means that if I am working at the operating

system level I do not care what compiler is there what micro architecture is there as long

as certain interfaces are satisfied. If I am working at a systems programming level like I

am writing a compiler if I am writing a development environment right. So, I do not

really bother about the other layers I just bother about the interface I have with the other

layers.

So, how the other layers are implemented it is basically a black box and this is very

important because as I given an example in the information security one course. It is very

if supposed this type of a virtualization is not there right then even writing an hello world

program would be in that I need to you know cover the entire computer science

curriculum before people can start writing an hello world program.

For example, you use printf right now printf is there is a device driver involved there is

an operating system involved there are there is there is you know the monitor driver the

hardware part of the monitor driver is also involved right. So, we need to teach all these

things before people can start using printf.

Now all these things are abstracted and given as one hash include s t d i o dot h and then

you can start using the printf and then the compiler will borrow code from some where it

will it will borrow code from the operating system which in turn can call some device

diver which will go and print it out. So, there are lot of things that are involved in the

implementation of printf which is completely hidden right and that is an example of a of

this virtualization that you are sees seeing in the screen.

Now when we claim to be a security engineer again I repeat then it is not enough that I

know each layer or one of this layer in isolation then I say that I will do something

secure about that layer that may not work because we need to have a understanding of

how that layer interacts with the other layer and all the functionalities a particular layer

wants from the other layer how those functionalities are actually implemented. So, this

type of an idea if we have then only we can make a secure system and that is something

peculiar about secure system engineering and that makes the whole thing much tougher

also.

(Refer Slide Time: 07:33)

Now let us go a little bit and say what is the, this meltdown attack meltdown attack is

nothing but any system any operating system works in two modes. One is the user mode,

another is the superviser mode or the operating system mode as a user you know what is

a process? Process is nothing, but a programming execution if you have hello world dot

C hello world dot C is called a source code or source program when I compile it I get

some a dot out and that is an executable program.

The moment I say a dot out and press enter then it becomes a process. So, a process is

nothing, but a program in execution every process will have two parts one is the user part

and another is the operating system part why should I process, when it is in execution

have two parts two parts in the sense that the process is basically exists in the memory.

So, the memory itself is divided into two parts one part basically it will be assigned for

the program, the other part is basically assigned for the operating system of the kernel.

Why I need a kernel is just see that in the subsequent slide but when a process is

executing it will have its own part, and it will also have a kernel part. Now similarly

another process is executing it will have a its own part and it will also have its kernel

part.

The way the operating system is built is that that the user cannot access the kernel part or

without proper authentication in some sense it cannot even touch or view the kernel part

right. Now what has happened here is that because of some because of certain issues in

the micro architecture definition and also in the circuit implementation we can basically

go there is a way by which the user can bypass the security mechanism and go and

access the kernel memory.

So, when the architecture is working at user mode the processor is working in the user

mode ah. So, if you have done the information security 2 course the processor can work

at 4 privileged levels namely privilege level 0, 1, 2, and 3. What I mean by the processor

is working at the user mode it is working at privileged level 3 which is the least powerful

privilege ok, so it is the user mode.

So, it does not have lot of access into different things it cannot execute some instructions

privilege instructions it cannot execute. So, it is just a user process that is running there

by definition no memory that is at privilege level 0, 1, and 2 should be could be accessed

by a privilege level 3 process. Now what this basically essentially means that if a at a

higher privileged level meaning p l 3 higher means numerically higher that you know

very less powerful privilege level. The security mechanisms that have been defined to

block a p l privileged level 3 core from accessing a memory of privileged level 0 is

bridged right.

And the reason for that is some problem with the micro architecture right. So, there so

the OS is built based on that assumption that the user part of the memory and the

operating system part of the memory are isolated and logically isolated, and there are

security mechanisms which will ensure proper access of the user space to the kernel

space, but that security mechanism getting bridged essentially has crossed the security

vulnerability. So, this is in just what is the meltdown attack.

Now this meltdown attack has been discovered in August 2017 and it is published in

January 2018 right, and the this has crossed the vulnerability in all the processes that

have been manufactured since 1995 right, so that is that is the impact of this meltdown

attack. And it involves almost every system like desktop, laptop, cloud servers as well as

you know smart phones wherever there was an operating system and wherever there was

a distinction between a user processor and the operating system process operating system

the entire meltdown has an impact on that.

And so this is this is the major characteristics issue and almost all manufacturers all the

major manufacturers processor manufacturers across the globe name to name some Intel

MD, they have been affected by this type of a meltdown concept. To some of the high

level idea is that the vulnerability basically has meltdown melts the security boundaries

which are normally enforced by the hardware right. So, between privileged level 3, and

privileged level 0 there is a there is there is a particular boundary that has been

established by definition by the hardware and that has meltdown.

So, basically giving a wave for a privileged level 3 process to access privileged level 0

code, so and this is cause because of some optimization issue. So, why did it come up

because there is in the architecture there are in the micro architecture that micro

architecture is defined well, but we try to optimize and get lot more performance and

when this type of a an optimization happened the that optimization has gone wrong. And

there something wrong with that optimization which has caused this there something

went wrong because of that optimization that has caused this particular vulnerability.

So, with this very quick introduction we will now go into some details of this meltdown

attack. I just wanted to this is the last minute addition into this course and we wanted to

do this because the attack has come and it is very important that people who are taking

this and this is something which is involving the operating system and the hardware. And

so this course is the real act place for us to basically give you the complete details of this

type.

(Refer Slide Time: 14:07)

So, these are the companies that have issued the advisories and that we have more than 3

dozens of companies here, who are actually issued advisories based on this meltdown

attack. This is just to give you the impact of this particular vulnerability that has existed

in the hardware.

(Refer Slide Time: 14:23)

So, in two sentences if I want to summarize a meltdown actually meltdown breaks the

most fundamental point that there is an isolation between user applications and the

operating system. How is this isolation achieved? Operating system assumes that this

isolation is there and the entire security that is built on top of the operating system is

essentially based on the availability of this isolation. And how does the hardware ensure

this isolation to the operating system if you take the Intel hardware there are 4 privileged

levels privilege 0, 1, 2, 3.

The privilege 0 is the very powerful thing that is where the kernel executes; privilege 3 is

the least powerful thing where the user programming executes. Now privilege level 3

code or process cannot go and touch a privilege level 0 memory, this is the basic

isolation that they are done and that is what is now broken. So, something at a higher

privileged level numerically a high privileged level and go and access something at a

lower privilege level, so that summarize the first statement that we have put on the slide

meltdown breaks the most fundamental isolation between user applications and the

operating system.

So, what does it mean? This attack actually allows a program to access the memory and

thus also the secrets of other programs and the operating system which it is not supposed

to do which is not true in terms of the actual user development manual is the processor

company has given to you right. It clearly states that privileged level 3 cannot go and

touch anything about privilege 0, but it is now becoming possible right, now why it

became possible what all and what is the consequence of that being possible we will just

see in the next set of slides.

(Refer Slide Time: 16:16)

Now, I want you to go and look at the IS 2 course the information security 2 course,

where we have spend lot of time trying to explain how task switching happens? That is

there is a process there is a programming execution, there is something called the context

of the process. What is the context of the process? I have said in the information security

2 course that when a when so there are 10 processes, that are lined up to execute. The

operating system will execute one by one it will give some, so it will assign say some 5

units of time for each process

So, first 5 unit it will execute process one, then it will pull it out then execute process 2

pull it out, execute process 3 pull it out and go on, so this is called a round robin

scheduling. So, every process will have a field that it is executing and that is how every

process goes to completion right, so this is the basic scheduling algorithm of the

operating system.

Now when one I say process one, is executing then it is pulled out. What you mean by

pulling out? I need to save some the context of that process, so that I have to restart it

again and when I pull out a process and then restart it should start exactly at the point

where it left right, so that is very very important. So, the round robin algorithm works

because lot of things work, because the something called a context and that context need

to be saved at different times right.

Round robin algorithm scheduling is one instance where the context need to be saved

one process is executing, I want to pull out that process then put a new process in then at

some point of time the same process which I have pulled out has to start executing again

for that I need to start from the point exactly where I left. So, for me to start at the point

where I exactly left I need to save the context of the process. So, the context of the

process is the minimum information that is necessary for me to restart the process

exactly at the point where it left, and that minimum information is basically stored in

what you called as the task state segment TSS.

Now look so what you see here on the slide is there are two task stage segment there are

two processes that are executing P 1 is executing, and P 2 is executing. Let us say they

are going to execute one after the other, so P 1 executes first and it will executes so, for

some 5 units of time then the operating system will pull it out when it pulls out all its

context meaning the general purpose registers, it difference stack registers, it difference

stack pointers all these things gets stored in the task stage segment and the another

process say P 2 its context get loaded.

So, it will start executing when P 2 is pulled out then all its current values of the general

purpose stage etcetera, as I as you have seeing on the screen will be saved in this in the P

2 task stage segment. And then the P 1 will be restarted what do you mean by the

restarting p 1? The content of all these general purposes registers stack etcetera are will

be reloaded into the different registers and then P 1 will restart right so this is how say

getting like a round robin scheduling works.

More importantly when you look at the task stage segment there is one entry called C r 3.

So, if you are looked at information security 2 course C r 3 if where the page directory

resides right. So, paging resides so; that means every process will be assigned a page

table of it is own we have described that in the information security 2 course and again I

am repeating that.

So, every page every every process will have its own page table. What will be stored in

the page table the page table will have for the different pages that are going to be

allocated to this process the corresponding entry in the RAM, page table is basically

translation from the virtual address to a physical address. So, I will have P 1’s page table,

I will have P 2’s page table. What could happen is inside a page table there will be some

pages that are assigned for the process. There will be some pages that are actually

assigned for the operating system.

Why do I need some assignment for the operating system we will now see shortly. But

what happens is what every operating system today does is that there are some pages

assigned for the process and some pages for the operating system. Similarly in P 2 there

will be some for the process, and some for the operating system. Some pages of the

operating system are shared between these two processes right.

So, this page table will have will point there will some entry which will point to some

location in the ram and in the page table for P 2 also the same thing will be pointed. So,

though I am changing the page table I can reuse the pages, or I can share the pages

between these two processes and which are the pages I will share I will learn or share the

user pages are the memory allocated to for the process that I will share the memory that

is allocated for the operating system for lot of reasons ok. And so this is this is one very

interesting stuff right.

So, so we need to understand that there are pages specifically operating system pages

that are being shared between two processes. So, let us first understand how does a

process basically talk to the OS? Why should the process at all talk to the OS? Let me

give you very simple examples already I talked about printf where I need to talk to the

monitor. And I as a user will have only give printf I do not know whether it is a some x

companies monitor, or y companies monitor. I do not know how pixels, I do not know

what resolution are there nothing I know, I just say printf or a I will just give a graphics

image, I will just open up a window where you know opening up lot of graphics image.

I as a user or a programmer high level programmer will not understand anything about

the arc hardware or architecture or anything of the monitor itself, or the device driver for

the monitor. So, the monitor will have some controller, monitor will have some device

driver, I do not know anything about anybody ok, so I just I just write printf ok. So,

printf basically when you do a printf as a process when I do a printf I need to call the

operating system routine and the operating system routine will take the details of what

needs to be printed.

Then it will go and contact the corresponding device driver which in turn will contact the

corresponding device controller and then it will then go and print. So, there is lot of

action that happens after I just put the printf, as far as I am concerned I do not know

anything about printf everything is taken care by the operating systems ok.

(Refer Slide Time: 23:48)

So, so when I execute a printf I need the operating system to be lot more work for me.

So, so as a user process I also need access to the operating system, that is why when a

page table is allocated for me there will be some memory allocated for me as a process,

there will be substantially you know at least equal or larger memory that will be

allocated for the operating system to do the work that I am assigning to that operating

system fine.

So, I as a processor assigning one very important example which is also of very good

relevance here is about malloc right, I as a C code I am asking for some memory right.

So, I have who will I ask I should ask the kernel the kernel has to come and give me that

memory right, so that is very very important, and that is what that is what is the

interaction between the process and the operating system. Typically you can also see

even lot of things like I type something on the keyboard, the keyboard has to go through

the operating system to the user process.

So, so any interrupt any type of interrupt or any system call that I make from my

program or any external interrupt that comes like I am asking scanf and somebody has to

the user actually types some input through the keyboard, or mouse etcetera. All these

things basically need OS support and that is one of the precise reason why that the page

table that we have has both the page table that we have for every process will have some

pages for the process and some page for the kernel. So, the a process should always in

interact with OS, even for its execution it is not that the process will never interact with

OS it has to interact with the OS for many of these things.

(Refer Slide Time: 25:56)

When you want to understand meltdown with this background we have to answer 3

questions. The first question is we need to understand the address space we have talked

something about the address space, physical address space, virtual address space

etcetera. Now in a process is requesting for memory how address is allocated to a

process for its execution? We need to understand some amount of this, and then the next

thing is how one process is protected from another and it is free full proof. What do you

mean by protecting one process from another? The process is not a human being where I

am having so a process who represents the process? The memory represents the process.

So, so there is a process executing what is the identity? What is the trace? The context of

the process and the memory that the process execute accesses these are the proof that the

process exists right. So, if I want to you know protect one process from a another process

basically; that means, I should protect this process x process from accessing any of OS

memory, and I should stop the OS process restrict the OS process from accessing any of

excess memory right. So, so x and y are two processes and I protect them means I have

to protect the memory regions that both of them access right. So, so this is something so

we have to understand the OS issue here. Then comes the hardware issue where we are

trying to do something called out of order execution and this also we have you know a

sort of covered in IS 2 course to a reasonable level.

So, when I have a program it is now a C program that is compiled in the assembling

there is an order in which these execute that is called in order execution. So, the

assembly language program will have x then next instruction and next instruction. Now

by doing this, what will happen one instruction after another instruction are going to

execute one after the other.

But suppose bunch of instructions which are not dependent on each other and if I have

enough functional units say I have 10 functional unit, 10 addition units, and I have say

100 additions to be performed nothing is depending upon another. Then basically I can

take this 100, and with a split spitted across these different units 10 for each for this unit,

and then parallelly execute concurrently execute this, when I concurrently execute what

will happen, so I have two instructions I 1, I 2; I 2 following I 1 in the in order definition.

Now I will start executing I 1, I also start executing I 2, I 1 can be a slow instruction I 2

can be fast instruction, I 2 can be a bite addition, I 1 can be a floating point division. If

that happens I 2 actually finishes before I 1 then that slot can be taken by I 3, and if a I

three is very simple instruction I three also can finish before I 1 right or after I 2, I 1 can

finish then I 3 can finish.

So, all these possible combination are there now if I 2 actually finishes before I 1, then

this is basically called out of order execution. I am not executing exactly in the order is

given in the program, but I can actually depending upon the availability of the different

units I can go and schedule different instructions and execute then different point of time.

So I 2 actually finishes before I 1, so that is what we say it is an out of order execution.

Now out of order execution is done for me to improve this cycles per instruction

basically the out of order execution is basically done to improve performance timing

performance. So, this optimization essentially has cross the vulnerability if this

optimization did not exist probably this vulnerability may not have existed, so there is

hardware.

So, what we try we need to understand what is out of order execution off course we will

give you a couple of slides to basically re write that, we have done it in the IS 2 course,

out of order execution also. Then the third step is off course the micro architecture where

in we are still working on the cache issues. So, so one of the important thing is the cache

attack or cache memory attack. What is the cache memory attack it is the timing side

channel attack on the cache which allows the attacker to read a memory address that he

is not supposed to right, so that is also this is basically a micro architecture issue.

So, when we look at meltdown there are 3 major steps. One is the operating system,

another is the out of order execution, and another is the micro architecture. In the next

session we will talk about address space basics basically the out of content that are

covered in information security 2 and information security 3 course. We will try and

complete some part of it some relevant part of it from the contrast of meltdown we will

we will do it in this section namely address space basics.

Thank you.

