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Segment 2: How to Understand the World? Play with it!

We are  now  on  a  segment  6  of  module  1  and  the  title  of  this  segment  is  how  to

understand the world play with it and this actually makes a lot of sense if you look at a

small child how does it understand the world around it, it plays little gaze it and then it

builds an understanding of the world how the world works, and that is how the child

develops.

And what we are going to see is somewhat similar to that in this ah, but in a much more

simplified  sense,  let  us  say  we  want  to  try  and  understand  and  build  a  model  a

probabilistic model of some system. And ah, but we do not know what the right model is.

So, what we do is we play with it, we repeat some experiment to try to understand what

the model should be.

And over the course of time, we get a good sense of what the model should be and that is

the goal.

(Refer Slide Time: 01:18)



um And we want we want to look at this in this segment is Bayes law which provides the

basis for this sort of playing with the world in order to get the best get to build the right

model ok. And this is this finds a lot of application especially in Bayesian statistics.

(Refer Slide Time: 01:41)

And so, that is what further ado let us look at a simple example where this sort of context

plays out. So, here is what we mean by the world around us, we have three coins, one of

them is biased it is bias. So, that it will land heads with probability two thirds, the other

two are unbiased, but the problem is we do not know which one is biased in which one is

unbiased.

So, we are just going to assume that they are all randomly permitted and So, this is the

world that we are given and, but we would like to build an improved understanding of

this world, build the right model we want to we will find the biased coin we would not

know what the biased coin is. And so, what would be a natural thing to do well let us try

to play with the world try to play with these coins toss them around, to see which one is

likely to be the biased coin. So, this is what we mean by playing with our context ah.

So, let us toy that you know. So, we can do that, but and we can get a sense of what

which one is biased, but we want to have a rigorous quantification of our understanding,

and that is where our attempt at modelling the situation comes in ok.
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So, what we do is before we start experimenting with these coins, we start with some

basic understanding a reasonable understanding of which coin is biased and which one is

not biased and. So, this is before we start any experimentation. So, its often called the

prior ok. And let us say we toss each of these coins once and ask ourselves you know

what is the outcome well say the outcome is, heads tails and tails the three coins.

Now, having seen this outcome we would like to make some inference about which coin

is biased in which coin is unbiased. It will not be a deterministic inference, but it will be

a probabilistic  inference and this because this is an inference that we make after the

experiment has been conducted, its called the posterior understanding of the posterior

model.

So,  before  the  experiment  we had a  prior  model  and after  the  experiment  we get  a

posterior model, and then we this, but this is only based on one experiment. So, maybe

we could try to improve upon this posterior understanding and how do we do that? We

just simply repeat the experiment a few times.
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So, here is a pictorial representation of how we can do that we start with a reasonable

prior model, we conduct an experiment and based on the outcome of the experiment, we

develop a posterior model. But now this posterior model is an improvement over the

initial prior model.

So,  this  posterior  we  therefore,  convert  that  into  our  prior.  So,  and  conduct  the

experiment  again and when we conduct  the experiment  again,  we get  an even more

improved posterior model and with that as our prior we repeat the experiment and so on

and so forth. And at some point we are going to reach a stable situation where there is no

not much more improvement and so, that kind of indicates that we have reached a good

posterior model and we break out of this loop.

So, this is this is very typical Bayesian inference in this context. So,. So, the question is

can we rigorously quantify our confidence in our understanding. So, we have run done

these experiment a few times, we what is how good is our understanding these are some

of the questions that we would like to answer.
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 And the key underlying principle that will help us approach this these this question is

Bayes law.

And So,  to  understand Bayes  law let  us  consider  some events  E 1 through E n the

probabilities of these events is what we are interested in. This is this is the model that we

want to build and these are we are going to assume that these are disjoint events, and b is

some other event this is this is usually the outcome of some experiment and based on this

outcome, we want to update the probabilities of these events. So, we basically want to

get these probabilities of these events E js and this given that after the experiment we got

this B as our outcome.

So, this is this is what we want and this is a conditional probability. So, we can apply the

formula that is very straightforward. And Bayes law is very simple you just look at the

denominator that is just the probability of the event B. And now you expand that out

using the law of total probability and similarly the numerator you apply the formula for

conditional probability.

But important thing is in the right hand side you are going to condition on the E E j

values on the probabilities on the on the E j events So, what you notice here is on the left

hand side we want the probability of the E events Ej conditioned on the outcome of the

experiment,  but  on  the  right  hand  side  what  we  are  going  to  do  is  switch  the

conditionalities.



So, conditioning on the E j s we want to plug in the probabilities of get the probabilities

of the of the event B. And why is this important and useful well because the E j is on the

right hand side corresponds to our prior model.

So, based on our prior assumption, we can actually compute things of this nature. Given

that we have a prior understanding of E j, we will be able to compute the probability of

B.  So,  this  is  something we will  typically  be able  to  handle  and that  is  the  type of

probabilities we have on the right hand side.

And because on the now we are in the right hand side, we have probabilities condition

the conditional probabilities of this type we can actually compute them and when we can

compute them what Bayes laws law gives us is a way to compute the left  hand side

where the conditionality is reversed and it in the focus now is on getting the probabilities

of the E js which is the posterior model ok.

(Refer Slide Time: 09:57)

Let us actually work out an example and things would become a lot more clear ok. So,

let us go back to the coin tossing example we have three coins we do not know which

one is biased one of them is and so, let us let e E i denote the event that the ith coin is

biased ok. So, E 1 means the first coin is biased E 2 means E a second coin is biased and

E 3 means the third coin is biased and of course, these are all disjoint events.



And we want to understand and build the model of which coin is the biased coin ok.

Initially we do not know anything about these coins. So, the reasonable prior to begin

with is that with probability one third, each one of them is the biased coin that is so, that

is pretty much all we can do because we do not know any more information about the

coins ok.

(Refer Slide Time: 10:56)

So, this is our prior model now let us try to apply Bayes law for that we will need to run

some experiment  and using  the  and we need to  be  able  to  use  the  outcome of  that

experiment, that event B in order to make some improvements to our model.

So, basically compute the posterior model. So, now let us say we toss each coin and B is

the outcome of each of those three coins. Now for now based on B we would like to

understand what is the probability of E i given that B came out as the outcome um.

So, this is what we want to compute these are the posterior probabilities.
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And let us look at an example to see how this can be worked out. So, let us assume that

this is our outcome B. The first coin came out heads the second and the third coins both

came  out  tails  ok.  Given  that  this  is  our  outcome  how  does  this  influence  our

understanding of whether the first point is the biased one. So, that is the event E 1, E

1remember refers to the event that the first coin is biased we want to understand this

probability ok.

Now, all we have to do is apply the Bayes law formula and notice that on the right hand

side we have the conditionality you switched we are now conditioning on E 1 ok.
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That is nice because for each of these we already So, we know this one this is a third that

is a prior model.

Ah  we  also  know  given  that  each  coin  is  equally  likely  to  be  biased  what  is  the

probability that you will you will see the outcome B how what is that well this is this one

third refers to this probability of E 1. Remember B is heads tails ok. So, what is the

outcome of what is the property of getting a heads given that E 1 the given E 1 which is

which means that the first coin is biased.

So, given first coin is biased what is the probability that that point will come out heads

well we know that its two thirds ok. And given that the first coin is biased what is the

probability that the second coin will come out tails well if the first coin is biased then the

second and the third coins are unbiased. So, they will come out tails with probability half

each ok.

So, and which means that the outcome B is the product of two third times one half times

one half because these three coins are tossed independently which. So, now, you see that

the numerator values we are able to get all the numerator values and in similar fashion

you can fill out all the denominator values as well.

And if you work it out it comes out to a half. So, if we see the outcome heads tails, then

our posterior understanding of the first coin changes you from one third which was a



prior  probability  that  the first  coin is  biased,  noting that  that  was the only coin that

showed up heads we have been able to update our understanding to say that look looks,

its more likely that the first coin is the biased one we cannot save deterministically, we

are still not far from being sure about it, but certainly our belief that the first coin is the

biased coin has been bumped up and its gone to about a half.

And if you work out the other two it will you will work will be able to work it out that

these are both a quarter these are the probabilities that e two and e three are the biased

once given this particular outcome. And this makes sense if you both of them showed up

as tails they are not likely to be the biased coin.

So, this one experiment changed our understanding a little bit and the this still is not you

know we still do not have complete understanding, will have to perform this experiment

again. So, this one half one forth one forth will become our new prior model, and we will

have to repeat to further refine our understanding of the words and that is what is shown

over here we started off with one third, one third, one third, we ran an experiment.
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We updated our probabilities and use this updated probabilities to run the experiment

again, and then further we will keep refining getting a will get a better posterior model,

which is the individual probabilities of E 1, E 2 and E 3 and that will become our prior

model run the experiment again, we will go through this loop a few times at some point



it will stabilize and we will know that this is the right answer at that point in time where

done.
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So, this is the general framework of applying Bayes law to understand the world around

us and in this segment what we have seen is we have shown how to apply Bayes law you

know in a fairly simple setting wherein we try to figure out which of the coin might be

the unfair coin ok.

So, with that we can conclude our understanding of Bayes law of course, this is just a

mere introduction, there is a lot more to this.
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Ah And I urge you to Google it up and explore some more about it ok. And this with this

we come to the end of the first module,  in the in so, far we have only worked with

probabilities and events and an important notion forum especially in the algorithm design

context is random variables, which we will be studying in more detail in detail in the

upcoming second module.

Thank you.


