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We are going to be talking about how strong our network is and what do we; well let us
look at the plan for this segment with the recall that in the last segment, we studied a
randomized algorithm for matrix multiplication and we introduced the probabilistic

notion of correctness.

What do we mean by an algorithm being correct with high probability in and in this
current segment, we are going to look at the problem of how strong a network is
formalize it in the following way we are going to define something called a min cut in a
graph informally speaking it is the fewest number of edges that you need to remove in
order to disconnect that graph that if that is very small, then the graphs in some sense is
not strong enough and that is the intuition that leads to this formalism and we present a

very simple elegant algorithm a randomized algorithm to solve this problem.
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So, let us look at the motivation as I said, we are trying to figure out; how strong the
network is. So, here are 2 examples of networks. The question is which of these graphs
networks is robust ok. If you look at the one on the right, it is completely connected. So,
let us let us say, we are play the devil’s advocate, we want to disconnect this network,
you would have to destroy a lot of edges before this network becomes disconnected,
even if you want to isolate one node, you will have to destroy all the incident edges and
that is a lot on the contrary, if you look at this graph on the left, if this is a network, you

only have to delete that one link and you have disconnected this network.

And so, this makes this network very brittle and so, you want to find out how brittle or
how easy to break your network is and so, we formalize it in the following ways, we call

this the min cut problem ok.
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So, we assume that our input is a graph with vertex set V and vertex E this represents our
network. So, typically you can think of the vertices as being the computer nodes and
edges is being the ability for a bit that 2 nodes can talk to each other. And, so if you can
create a cut in this network; that means, there is a portion of the network that cannot talk
to the rest of the network and that is that is not a good situation. We want to avoid that.
So, cut is a partition of vertic of the vertex at V into 2 sets S and the remaining V minus
S and the cut set corresponding to a particular cut is the set of edges with one end in S

and the other end in V minus S.

So, all these edges that go across the cut are called the cut set our goal is to find the
partition we want to find the set S such that the corresponding cut set has the least
cardinality you want to find the smallest cut and that is called the min cut. So, we want to

find the min cut.
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So, the algorithm we are going to look at was invented by Karger’s. So, call it the

Karger’s Mincut algorithm.
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Um there is you know we have we have to keep in mind that there is a flow based
algorithm that could do quite well as well, but it is still not very efficient the most
straightforward application of the flow based algorithm would lead to something of the
order of n to the 5 and we want to do better than that ok. So, that is and moreover the

Karger’s algorithm is very very elegant and nice. So, you will see this and the algorithm



here is the algorithm right its very simple you just repeat this process of contraction n
minus 2 times because each time you contract you will be coalescing two vertices. So,

you can do that n minus 2 times for your left which is two vertices.

So, repeat until the graph has only two vertices. Now, let us pick an edge uniformly at
random from all the edges, I think note here is the graph the way it will progress you
might end up having multiple edges going between vertices. So, when you pick an edge
you are not you should be careful not to pick two vertices and then consider the edge
connecting them because some edges could have a lot of some vertices in some pairs of

vertices could have a lot of edges going between them and others may be much fewer.

So, you really have to be careful to pick the edge uniformly at random over the set of all
edges ok. So, these two vertices between which there is a lot of edges and another. So,
for example, here say this one has lots of edges going between them and there is another
pair of vertices and you only have one edge going between them, the probability this one
edge is chosen should be exactly equal to the probability that this other edge of here is

chosen ok.

So, pick such an edge uniformly at random and then you look at the two vertices that it is
connecting. So, let us say this is u and this is v. Now knowing that this edge is
connecting u and v, we have to contract or coalesce u and v into a single vertex. So, you
have to contract that edge and when you do that. So, for example, now if you contract u
and v and that is add a couple of more edges to illustrate the point, let us say this is our

graph when you contract u and v, you have to put u and v together as one vertex.

So, this is the coalesced vertex u v, and let us just call these x and yv ok. So, all these
edges that go between u and v will form self loops when you contract them. So, they are
all removed. So, you remove all the self loops just do not consider them, but you need to
be careful about the other edges though. So, let us put down x and y and you have let us
look at the there is one edge going between u and x now there is no u there is only au v,

but you see that edge still has to be put in over here.

And between v and x there is an edge. So, that has to be a separate edge between V and y
there is an edge and between x and y they there previously was an edge. So, this is the
new graph that we get ok. So, this is the algorithm you just keep contracting you pick an

edge uniformly at random you contract it and create a new graph and this new graph will



have one fewer vertex keep in mind some of the vertices are going to become these sort
of compound vertices that contain multiple original vertices in them. So, we do this until
we are left with just two vertices and when we are left with two vertices what will picture
look like well it is going to look something like this there is going to be 2 sort of giant
vertices that include a lot of coalesced original vertices and then. So and then there is

going to be edges across them.

And all the vertices in one of these what is the original vertices in one of these what is
these sort of coalesced vertices you call them s. So, all the original vertices in the other
coalesced vertex is going to be V minus S at least this is going to be our candidate S and
V minus S and our hope is that this edge this edge set will be the min cut and this of
course, is not guaranteed, but we hope to be able to show that with some reasonable

probability indeed that will be the min cut.
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So, let us look at the execution of this algorithm in this example. So, here you have a
sequence of graphs ok, what this is the original graph this is the original graph and we

have chosen to contract this vertex as.

So, this edge and because of that contraction it is the two vertices have become one
vertex and now there are one two three four five six edges going away from these pair of
vertices. So, those 6 edges must find there well actually there is a seventh one over here.

So, then those seven edges must be here and you notice that is the case there are these



seven edges that are incident on this new coalesced vertex all this must have been oneself
loop that was created that was removed. And now you pick one more edge to contract
this is the edge that is chosen for contraction and after contraction you get this coalesced

vertex and you continue on ok.
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So, now you have chosen to contract this edge and you get this vertex as the coalesced
vertex. Now notice that you are trying to contract this edge and you get this coalesced

vertex and you continue on.
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So, you are contracting you have chosen to contract this edge you get this coalesced

vertex and you continue proceeding.
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This way you are left with two final coalesced vertices and you are left with these 3
edges and incidentally these are all this coalesced vertex in this coalesced vertex
respectively contain all these vertices and all these vertices respectively and if you think
about it the min cut indeed was this these 3 edges that separated the top from the top 5
vertices from the bottom 5 vertices and. So, this shows an example of a good run of this

algorithm because it has actually led to us finding the min cut.
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But of course, that is not at all guaranteed it is a probabilistic thing and you need to be
able to show that this happens with some reasonable probability. So, let us try to analyze
that ok. So, what is it that we are going to prove let S be the set of original vertices that

led to one of the final two vertices.

So, remember the algorithm ends with 2 final vertices with and let S be the set of original
vertices that led to one of the final two vertices now with probability at least one over n
choose two. So, that is one over some polynomial n S and V minus S induced the
smallest cut. So, the cut set produced in this way is going to be the min cut with
probability at least one over and choose 2. So, this is this is what we need to show ok.
So, I noticed that this probability is fairly small. So, this one over some polynomial n,

but bear with bear with me will figure out how to deal with that.

So, how do we prove this lemma ok, actually we do not care a about all possible min cuts
you know a graph can have lots of min cuts and good exercise for you would be to come
up with graphs that have lots and lots and lots of min cuts. So, now, let us pick one min
cut that C star be a cut set a min cut of minimum cardinality ok. So, instead of proving
something strong like the probability of finding any min cut is bla, we are just going to
limit show that even finding this one particular min cut this finding the probability of

finding this one particular min cut is at least one over n choose 2 and this is actually



good enough if you think about it ok. So, we are going to limit ourselves to this proving

this.
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So, let us try to figure out, how to do that and think about how this event may fail to
happen what could go wrong as long as the edges that you keep picking are avoiding the
min cut, this particular C star um, let us let us say that you know there is a graph looks
something like this and this is the min cut that are this is the C star that we are talking
about as long as the contractions happen over here, in other edges that are not part of the
min cut, we are going to be fine the min cut is going to survive till the end the moment
we pick a min cut edge we have lost it ok. So, that is the intuition that we want to

formalize ok.

So, towards that let e 1 e 2 and so on up to e n minus 2 be the sequence of edges
contracted by the algorithm now as I said if one of this e 1 through e n minus 2 is a
member of this min cut that is bad ok. So, the other way of saying is that the algorithm
succeeds is if none of them are in C star ok. So, this probability that we care about
probability that the cut produced by the algorithm is not C is C star is equal to the
probability that the last edge that we contracted was not n C star the last, but one of the
edge that we contracted was not in C star and so, on up to the first edge that was

contracted ok. So, I have just gone in the back reverse order for a reason.



So, now this is the probability of the intersection of several events also. So, all of these
things will have to happen in order for the algorithm to succeed. So, a lot of stars have to
line up. So, let us what we you know let us see the one thing need, we need to be careful
about is these are not independent events, they could there could be dependencies. So,
we should be a little bit careful we cannot just multiply their individual probabilities, but
given this situation, we can write this intersection of all these probabilities in the
following manner you isolate the probability the conditional probability of just the very
first event listed over here conditioned on all these other things happening ok. But if you
were to do that then you also have to multiply it by the probability of whatever condition

you imposed ok.
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So, that same thing is written over here, but now the same structure holds over here. So,
here if you notice it is just the probability of the intersection of several events except e n
minus 2 not n C star has been removed, but the rest of them over all intersection of
intersections of events which means we can repeat the same procedure you isolate e n
minus 3 bitten does not belongs to C star conditioned on the rest of them. But then, if
you were to do that you would have to then multiply it by the probability of this
condition which means then you can isolate e n minus four conditioned on the remaining

intersections and so on.



So, when you work that out you are going to get this this sequence of conditional
probabilities and the last one of course, is you are going to end with probability of e 1 not
in C star after which you cannot apply this any further. So, this boils down to computing
one such conditional probability because really the probability that we want is the
product of a sequence of such conditional probabilities. So, by now you may be
wondering; what is the intuition ok. So, let us actually look at a picture that gives us the

intuition of exactly what happens let us think of the execution of this algorithm.

at the very beginning you are in some state you have still not picked any edge. So, then
you pick an edge that edge could be a member of the min cut C star or not if it is a
member of the cut C star basically what; that means, the very first edge that you picked if
that belongs to C star that is very bad your this execution will not succeed otherwise you
something good happens e 1 is not in C star good great. So, then the execution has
survived the first iteration ok, but then again the second edge that was chosen e 2 if it
belong to C star again we are out of luck. So, the execution we had as we had off into a

bad situation otherwise its good and this continues on ok.

So, at any point in time, let us look at what is the you know what happens well if you
have managed to reach this point that is basically saying let us let us say that there was a
sequence of executions this is the i-th iteration how can you say that the i-th iteration will
succeed or fail well first of all you should have reached the i-th iteration what does it
mean to have reached the i-th iteration all of these where good all of these had to have
been good only then you would have even reached here and that is exactly what is
captured by this condition all of the previous edges e i minus 1 e i minus 2 and so on up
to e 1, all of those edges must have missed the min cut only then you would have even

come to this point and then conditioning having come to this point.

Now, you can ask what is the probability that you would either go down this bad path or
you would continue to I am sorry you would continue to be in the good path and that is
exactly the intuition here. So, now, that we can come back to the formalism here let us
look at this let us look at each of these conditional probabilities right. So, in particular we
are going to focus on this one conditional probability right. So, let us 2 2 2 x get the right

expression for that when particular probability.
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Let us denote the size the min cut asking, now if you think about it as the graph control I
mean as the edge contractions take place the degree of the graph that we obtained is
never going to be less than k why is that well if you look at any cut in the graph as the
algorithm progresses in the let us see in the i-th iteration any cut in the graph actually
corresponds to an original cut in the original graph. So, if that if the number of edges
going across the cut that you chose in the i-th iteration is less than k its also going to be

less than k in the original graph.

So, k is going to be a lower bound on the min cut as the algorithm progresses. So, all the
graphs that we encounter till the very end is going to have a min cut of size at least k
which means the degree will also have to be at least k because if the degree is smaller,
then you can create a cut you can either do the small the low degree vertex can become
one side of the cut and all the other vertices can become a other side of the cut. So,
clearly that the minimum degree of the graph G that we have is at least k and as |
mentioned this is going to be the case throughout the execution right. So, any look at any
coalesced vertex um. So, this has a lot of the original nodes and if you look at all the

edges going out of that node it cannot be it cannot become less than k ok.
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So, just before the i-th contraction how many vertices are there well I minus one
contractions have taken place. So, you are left with n minus I, I you will be left with n
minus I minus one vertices which is n minus I plus 1 and each one of them has degree at
least k right. So, if let us if you count and how do you count the number of edges well
actually let us count the total degree there are n minus I plus one vertices each of degree
at least k and, but if you count the total degree that double counts the number of edges.
So, if you divide by 2 you will get a lower bound on the number of edges. So, now, let us
go back to this probability remember this probability term is what we want to compute

ok.

We know that the total number of we know that the number of edges is at least add this
quantity and we have reached the i-th the execution without destroying the min cut C star

how do we ensure.
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So, what is the probability?
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That i-th edge that is chosen also avoids the min cut well that is going to be at least the
probability that i-th edge is part of the min cut. So, the back this is the probability of a
good event this is a good event that i-th edge did not belong to the min cut that is going
to be 1 minus the probability of the bad event which is that i-th edge is a member of the
min cut C star. So, this is going to be the probability that i-th edge is a member of the

min cut that is what we need to put here.



So, how do we get this expression here well there are k edges in the min cut if you
choose one of them which you will do with probability k over the set of the torah the size
of the total number of edges ok, if you this is going to be the probability with which you
are going to choose one of these min cut edges. So, this is going to be the probability of
the bad event. So, if you do 1 minus the probability of the bad event you will get the
probability of the good event right and keep in mind that this is just the lower bound on

the on the size of the on the number of edges.

So, when you replace the total number of edges by a lower bound this whole quantity can
become a little bit larger the probability of the bear even could become large potentially
a little bit larger. So, 1 minus of this therefore, you could only be a little bit smaller and
as a result you will have this inequality here its greater than are equal to this whole thing

on the right hand side ok.

So, now, if you work that out its going to come out as n minus 1 minus 1 divided by n
minus I plus 1 this is the expression we get for this one probability term. So, now, going
back to this original probability that the cut produced by the algorithm is C star
remember we wrote that as the product of multiple conditional probabilities and for each

one we have n minus i minus 1 divided by n minus i plus 1.

So, if we plug that n we get this telescopic product and nice thing is there is going to be a
lot of cancellations this n minus 2 will cancel out with this one there will be an n minus 3
cancel out cancelling out with the next n minus 3 over here and so on. So, here if you see
the 3 will cancel out over here four will cancel out over here and so on. So, what you will
be left with is these 2 terms the denominator and this 2 here in the numerator which is

exactly what we want. So, with that we have proven the lemma ok.
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So, now, we need to figure out a way to boost the probability of success remember now
we only have a probability of success that is something like 2 over n into n minus one
and that is pretty low ok. So, let us figure out what let us see what happens when we

repeat this some number of times.

So, let us in particular we are going to repeat it this many times let us see what happens
what is the probability that all of these repetitions these C times n choose 2 times log n
number of repetition what is the probability that all of them will fail well the probability
that one of them will fail is 1 is at most 1 minus 1 over n choose 2 the probability that all
of them will fail and these are all independent repetitions is this a product of this many
times. So, you can just raise it to the power C C n choose 2 times log n and we have this
inequality 1 minus x is at most E to the minus x is a commonly used inequality. So, this 1
minus this quantity can be written as E to the minus 1 over n choose 2, but then you also

have this in the exponent.

So, the new E to the you get overall you get E to the minus this exponent the nice thing is
is this n choose 2 over here and then choose 2 over here, they cancel out and you can
take the C as log in the whole raised to the power C and so, you finally, this works out to
1 over n choose n to the power C ok. So, the nice thing is now what we have shown is
that the probability that all of these repetitions will fail is at most one over some

arbitrarily large polynomial n ok. So, this leads us to the algorithm that will succeed with



high probability you keep repeating the algorithm this contraction algorithm that we have
discussed you repeat that this many times C times n choose 2 times log n times and each
time you repeat you see what is the min cut that you get if it is better than all the min cuts

that you have seen before updated ok.

So, at the end you would have the best min cut that you have seen is in all these many
repetitions and that min cut is going after that that candidate min cut actually will
actually be the true min cut with probability at least 1 minus one over n to the C and that

is that is exactly what we mean by with high probability.
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So that is good. So, we have got the algorithm working correctly what we need to do is
make sure that we have not designed a very bad algorithm in terms of running time um,
but keep in mind that this is a Monte Carlo algorithm, we are not guaranteed to have
found the min cut we have we guarantee that the min cut that we produce is going to the
cut as a cut that we claim as a min cut is indeed going to be the min cut with high
probability, but not guarantee and this Karger’s algorithm this contraction algorithm can

be carefully designed to run in O of n squared time.

So, the overall running time because remember we at also repeat this is another n choose
2 times log n number of times. So, the overall running time is going to be O of n to the

four log n and that is going to be better than the flow based algorithm.
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So let us conclude this segment, we have studied the problem of finding a min cut in a
graph we discussed an elegant randomized algorithm invented by David Karger and
show that if you repeat it appropriately it is going to be correct with high probability

which is faster than the usual deterministic algorithm that we think about in this context.
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In the next segment, we are going to study base law and we will see it via an example
where we need to understand something about the world around us, we will repeat some

experiments. And, as we run these experiments we will get a better and better



understanding of the world around us and that is what we mean by. I mean by this you
know this prompt for the next segment how to understand the world around this play

with it run some experiments figure out update your understanding of the world.

So, with that we end this segment.



