
 Probability & Computing
Prof. John Augustine

Department Of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 01
Introduction to Probability

Lecture - 03
Segment3: Verifying Matrix Multiplication (Statement, Algorithm, &.

Independence)

So,  now we are  going to  start  the  third  segment  of  the  first  module  and in  this

segment well if you recall.
(Refer Slide Time: 00:26)

So, we now have a formal understanding of terms like sample space events probability

function  and  so,  on.  So,  the  goal  for  this  segment  is  to  introduce  the  notion  of

independence,  which  is  very  fundamental  in  probability  theory. And also  the  related

notion of conditional probability and work through some examples.

And then we are going to look at  and we are going to do this  in the context  of an

algorithmic  problem  ok.  So,  it  is  going  to  be  the  problem  of  verifying  matrix

multiplication it is a and we are going to provide a very simple randomized algorithm.

And while we are doing that we are going to leave some undefined terms and that those

terms  the  ones  are  going to  lead  to  an understanding  of  conditional  probability  and

independence.



We will try to clarify those terms and then finally, we end with a well-defined description

of the randomized algorithm ok. We are going to still leave a few questions hanging at

the end of this segment. For example, we will whether the algorithm is correct is going to

be left out in this segment and we will address that in a subsequent segment.

(Refer Slide Time: 01:40)

.

So, here is the problem statement, you are given 3 n cross n matrices A B and C. And you

are asked to check if A times B equals C and you would not have you at the output yes if

they are a B equals C and no otherwise ok. And of course, you all will know how to

solve this very easily you just multiply A and B ok. There is only one downside to it this

when you multiply you are going to take the normal naive multiplication is going to take

theta of n cubed time ok.

And  this  is  fine  for  small  matrices,  but  nowadays  the  applications  for  matrix

manipulation come from big data applications right, talking about very large matrices

like 10 000 cross 10 000 or something like that.

And so, then an n cube time algorithm becomes prohibit prohibitive ok. So, you need to

somehow speed this up there are some fancy algorithms that you can use you might have

heard of strassens algorithm anybody. So, that brings it down to like 2 into the 2 point 8

9 or something like that.



And then even more fancy algorithms that only theoreticians think about will bring it

down to n to the 2.37 I think there is been some improvement in the in this n to the 2.37.

I think it was 2.3 8 and for like 20 years and then somebody came up with a very actually

2 people independently came up with brilliant ideas to improve it from n to the 2.3 8 to

2.3 7 or something like that.

So, yeah that is something you could do if you wanted to, but that is going to be very

complicated algorithm, but our interest is to try and do this even more efficiently and

take advantage of the fact that we can design algorithms that can toss coins ok.

(Refer Slide Time: 03:40)

.

So, here is how this randomized algorithm is going to work ok. We are going to generate

a column vector and that is this vector r and we are going to do it in a very specific way

we are going to choose there are n bits in this column vector each of those bits has to be

uniformly at random.

So, another way of thinking about it is just flip a coin if it is heads make it a 1, if it is a

tails make it a 0 it has to be a fair coin ok. And the outcome of and we also want each of

these n bits to be independent of each other ok. This is again a term that we have not

defined well, but it just means that these coins have to be done without influencing each

other we will formally define the this term shortly ok.



So, you will get basically r 1 r 2 r 3 so, 1 of 2 r n this is the column vector. And this we

already have and the same column vector shows up here as 1 ok. And here is what we are

going to do we are going to see whether A B r. So, matrix multiplication of a time A with

B and then matrix 2 vector multiplication, which gives us A B r, whether we will check if

that is going to be equal to C C times r.

If these 2 are equal we are going to output saying A B equal to C otherwise if they are if

they turn out to be unequal we are going to output saying a b is not equal to c ok. So,

now, the nice thing that you should notice immediately is that A B r can be computed in

of n squared time why? Because you first perform this multiplication and that is going to

be an n squared multiplication you will get a vector. And then again now you do you

perform this multiplication ok.

This might be reminiscent of matrix chain multiplication that you might have studied in

your algorithms right we are exploiting the same phenomenon here as well. And so, what

now what we are going to get is an n squared time algorithm to compute the left hand

side and of course, we have an n squared time to compute the right hand side as well. So,

this algorithm it takes only off n squared time is, it very clear hopefully.

So, you just generate a random vector each element chosen uniformly and independently

and random and you puff call that r you compute A B r left hand side you compute C r

right hand side and check if they are equal. So, these are the terms that we need to worry

about, but here is one other pesky question that should rankle you, why is this algorithm

correct? Because we are asked to check whether A B equal to r, but what we are doing is

A B r equal to C r ok. So, that is something we need to worry about it will defer that

question to A later side.

Now, I want to explain this notion of independence ok.



(Refer Slide Time: 07:07)

.

And in order to do that there is a very nice saying if you want to carve an elephant how

do you do that? You take a large rock and chisel away everything that does not look like

an elephant. And then what you are left with is going to be an elephant that is what we

are going to do?

So, if you want to try and understand independence we are going to chisel  away all

notions of dependence and what we are left with is independence? We are going to take 2

events A B and we are going to see how they can depend on each other and define

independence as the opposite ok. For that we will need A notation probability A given B

ok.



(Refer Slide Time: 07:33)

So, this what does this mean it is the probability of an outcome A or an event A given A

guarantee that outcome B occurred ok, given event B occurred ok. Another way to think

of this is the following, you are running an experiment ok, you repeat the x and A and B

are 2 events, you and remember what is the when is A and even you are talking about 2

subsets of the sample space.

You basically define A when you when you say A given B what you are doing is you are

defining a new experiment ok. In this new experiment you are going to take the old

experiment you are going to repeat it over and over and over again until B occurs the

event B occurs. And when they even B occurs, then you check then you check I mean

whatever outcome, you have that is the outcome of this new experiment ok. Does that

make sense let me repeat what I am saying basically you start out with an experiment

you are concerned about 2 events A and B ok.

You want to understand the probability of A given B ok. So, the way to think about it at

least one way to think about it is create A new experiment in, which you repeat this old

experiment until B occurs. And will be A occurs whatever outcome you got in the last,

when B occurred is the outcome of this new experiment ok. And in that experiment you

want to understand the probability of A and that is this probability of A given B.



So, let us look at a an example consider 2 dice that are rolled let us ask I mean. So, one

way to exercise this understanding of this notation is we can ask, what is the probability

that the sum is even given that the first outcome is odd ok.

So, let us say what you do is you roll 2 dice ok. And if the first outcome is even your

condition is not satisfied B is called the condition right B is not satisfied ok.

So, that is not good enough you keep repeating the roll the 2 dice being rolled until the

first dice is odd ok. The moment the first dice is odd, then you can ask is my some even

and that is this notion of conditional probability.

(Refer Slide Time: 10:20)

So, let us work that out. So, now, you can roll 2 dice and you want to ask what is a the

notion of given at, the first is odd another way of thinking about it is you look at the

sample space when 2 dice are rolled ok. And then what you do is simply remove these

outcomes because they are not relevant to this condition. If you condition that the first

dice has to be an odd only these are the relevant outcomes ok. So, only the ones marked

green.

So, now, ignore all the other outcomes and just worry about these outcomes and. So, in

other words your sample space gets redefined ok. This is the out this is the sample space

of this new experiment that I talked about ok.

 (Refer Slide Time: 11:13)



Now you can ask what is what is the probability that the sum is even given that the first

is odd.

So, now you ignore all the those sample outcomes that are not relevant and then among

those there are relevant mark green, you ask what are the ones that are what are the

outcomes in which the sum is even and those are marked with a smiley face.

And now you can see that there are a total of 18 outcomes equally likely outcomes mark

green out of which 9 have a smiley face. So, your probabilities are half.

(Refer Slide Time: 11:51)



So, now let us try to arrive at A formula for this probability of A given B let us first do

try something ok. So, let us first try probability of A intersection B ok. This is this is not

quite hitting the mark, because there is this other aspect to this conditional probability

right. We need to reduce the sample space somehow ok.

(Refer Slide Time: 12:26)

So, what we are going to have to do is probably so, basically now you have to throw

away all the sample space outside of B. So, when you talk about probability of A given B

what you have to do is consider this as your sample space and out of that you consider

what is the probability that a occurred? Given that B occurred ok.

So, your sample space is B and out of that sample space what is the probability that your

event of interest A occurred ok. And how do you achieve that you this probability of A

intersection B gives you this portion, but then this is with respect to the overall sample

space.

So, now you have to restrict it to just B you achieve that by in some sense normalizing

over B. So, that is basically dividing by B ok. So, this is your formula for computing

probability of A given B and I could have just written the formula and walked away, but I

would like you to think about how these formulas come about ok.



(Refer Slide Time: 13:47)

So, now let us talk about dependence remember we are going to have to we have to

understand dependence to chisel it away. So, that we left with independence.

So, it is easy to also think about dependence right if when can we say that A depends on

B, if somehow when B occurs some the probability of A changes. Then you know that A

depends on B the fact that B occurred somehow change the out the probability of A, then

you know that is dependent on B. So, that is what we are going to write in this fashion.

So, we so, simple now we are ready to chisel it away it. A does not depend on B oops if

probability of A given B is equal to the probability of A now the thing is. So, basically A

does not depend on B now we have A formula for probability of A given B right, just

applying that formula we get property of A intersection A does not depend on B, if and

only if probability of A intersection B divided by probability of B equals probably.

So, now we will come the classic formula or definition of independence this you might

recall is the way diff independence is often defined and even A is independent of B if

probability  of A intersection B equals to the product of the 2 individual probabilities

probability of A times probability of B ok. So, this is you might have seen this as the

very  definition,  but  hopefully  the  intuition  is  clear  as  to  how  your  arriving  at  this

definition.



And here you should notice something we are talking about A depending on B, but look

at the condition for independence can you interchange A and B and still have the notion.

So, that is there is this beauty here there is A symmetry here if A is independent of B,

then what can you also say B is also independent of A.

(Refer Slide Time: 15:51)

So, you can actually work out the exact same notion for B and you will get that thus

independence is A is symmetric and B also does not depend on A, if and only if A does

not depend on B. So, to summarize we A and B are independent if probability of A given

B equal to A property of B given A is equal to B and probability of A intersection B equal

to property of A times B all these are equivalent statements any questions on the notion

of independence?



(Refer Slide Time: 16:33)

So, now we can revisit this algorithm. So, would we have to generate A column vector r

of n bits chosen uniformly and independently at random. And how do we do that we

know the notion of independence how do we actually do that.

So, now, what you do is for each random bit we have to do this for I equal to one to n

toss A fair coin set the bit I to 1 if heads else bit to 0 and completely forget the outcome

of  the  toss,  because  the  next  one  has  to  be  completely  independent  of  the  previous

pointer.

So, comes and you repeat this n times you will get vector r that you need.



(Refer Slide Time: 17:19)

Now, there is an important claim here each of the 2 power n binary column vectors now

if you have A binary vector of A n bits. How many outcomes I mean what are the total

number of possible such binary vectors is 2 power n right. Each of the 2 power n binary

column vector is equally likely, we want to be able to argue that each one of them is

equally likely right.

So, what we know is each individual bit is equally likely to be 0 or 1. How does that

imply that the entire n bit binary vector is drawn from A sample space of 2 power or n bit

binary strings each equally likely that is the question ok. So, now, how we are going to

do it  remember  now our  sample  space  is  2  power  n  binary  vectors  ok,  pick  1  any

arbitrary 1 we call it r 1 r 2 and so on up to r n ok.

So, a vector sum using the column vectors and using transpose over them, remember

each bit was generated the way you generated you generated completely independent of

each other right.  So,  and if  they were independent  you recall  that  they are probably

individual the probability of r 1 being a certain value r 2 being a certain value and so on

those  individual  probabilities  can  be  multiplied,  because  that  is  the  formula  for

independence we showed it for 2 events, but it extends to any events as well ok.

So, then you take one by for each r 1 the probability that you get the appropriate r 1 is

half appropriate r 2 is half and so on. So, you multiply half of it C with itself n times you

get 2 raised to the minus n. So, what have we established if you pick any one of the 2



power n binary vectors you the probability that you get that particular binary vector is

one by 2 raised to the n that is equally likely.

(Refer Slide Time: 19:24)

.

So, now hopefully if we revisit the randomized algorithm all the terms are clear to us.

(Refer Slide Time: 19:35)

We know  exactly  what  we  mean  by  uniformly  and  independently  and  then  all  the

algorithm is  clear  to us we have understood,  but either  way along the way we have



understood the notion of independence of events conditional probability, we still do not

know whether it is correct.

(Refer Slide Time: 19:42)

We know the running time. So, we know this k is guaranteed to run in o of n squared

time we do not know the correctness and we will see that in the next segment ok.

Thank you.


