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So, we have seen about a couple of applications of tail  bounds in this course in this

module. And now we are going to see something that is actually quite famous, we are

going to talk about routing in sparse networks. So, here is the plan for this segment first

of all we are going to define a low degree network. So, if you think about networks in

data centers and things like that, you need low degrees sparse networks because in order

to maintain the computers in the data centers. 

So, that they can I mean you still want it to be low diameter you want the latencies to be

small. But at the same time you do not want very high degree or very high number of

edges dense graphs because then you will have to invest on a lot of wire. So, a hypercube

is one such example that is low degree and low diameter ok.

So, we are going to define a hypercube, and then we are going to take an illustrative

problem the permutation routing problem will define that. And we will point out that



deterministic  algorithms are  bad for  solving  this  permutation  routing.  We would  not

prove this, but we will just point that out. And then in this module, in this segment, we

will  discuss  an  a  very,  very  simple  and  very  neat  algorithm;  it  is  a  little  bit

counterintuitive possibly, but very nice and elegant algorithm. And in the next segment,

we will analyze its properties ok.

(Refer Slide Time: 01:53)

Just to motivate this is this problem is set in the context of congested networks, they are

all used as you know traffic congestion, slow internet and stuff like that. And sometimes

when you see how the flyovers are built in china you wonder you know what thought

went into that. 



(Refer Slide Time: 02:15)

So, yeah so this is let us actually look at some science behind this. And this is something

called a Braess paradox. So, let me just briefly talk about this. So, this paradox kind of

tells you about you know smart ideas that you might have, but may not and smart in

quotes that may not really lead to improvements. Let us let us see what happens over

here.

So, you have this two cities S and T. And you have two ways to go from S to T. And let

us say there are some 20,000 cars that want to go from S to T ok. And these routes have

two segments each for now ignore the dotted route. This and the if you look at the top

route, there is a segment that has this L over 200 this means the time it takes for a car to

go from S to A is the is given by the load the number of cars that are going to use that

route divided by 200 ok. So, this is you can think of it as a small road, where if more

number of cars go that, then there is more congestion and therefore, this more delay ok.

But then there the other segment from A to T if you notice has a fixed time. So, this is

like a highway plenty of lanes. So, the your latency does not depend on the number of

cars mean you have a similar  situation  in the bottom route except  the constant  time

segment is first followed by the segment that in which the delay depends on the load.

And, so now our example we have 20,000 cars and it is not hard to see that with without

the middle road that connects A and B ok, ignore that for the moment.



You expect people to you know say little game theory here, people will realize that they

you know if one side gets too crowded, then they will start using the other side and so the

cars will split roughly into 10,000 each ok. And it is not hard to see that the latency here

is going to be 160 minutes or whatever units of time you want to take ok. Why, because

there is 20,000, 10,000 cars each, so if you divide that by 200, you are going to get

something like 50 plus 110 units for this segment. So, you have a total of 160 units. 

But let us say what happen let us see what happens if you build this very high speed

corridor that connects A and B ok. This is very fast and you know really high investment

road that is built between A and B takes zero time to go from A to B well (Refer Time:

05:19) ok. But then let us see what happens you will start to realize that people will start

going from S, so they what is what will be the natural way people will try to gain the

system, they will go from S to A, then try to use this very fast connection. And then from

A to B, and then go from B to T and what will happen is this will have a snowballing

effect and ultimately everybody will want to do that.

And if everybody does that then we are in a bad situation because this segment will take

20,000 divided by 200. So, that will take about 100 units. This is 0 and this will take

another 100 units. So, it  becomes the Nash equilibrium if you will becomes this bad

situation ok. So, this is just to illustrate that congestion is important and funny things can

happen. So, we have to be very careful and just being so called smart it is not necessarily

the right thing to do ok.
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So,  this  brings  us  to  a  contribution  by a  recent  Turing  award winner  Lesley  Valiant

known for many things, but we are going to be particularly focusing on the theory of

parallel and distributed computing. In particular one of his famous contributions here is

what we are going to talk about today ok. 

(Refer Slide Time: 06:51)

So, first to set it up we have an n dimensional hypercube. What is that? Well, basically

each node in this hypercube is denoted by an n-bit id ok. And here the number of bits is

small n. And so the total number of nodes in this n dimensional hypercube is uppercase



N. And if you win are two nodes connected or not connected, they are connected if and

only if their id is differ by exactly 1 bit ok. So, if you have 1011011, it will be connected

to one, two, three, four, five, six, seven other nodes. So, for example, you be connected

to 001101, why because there if they differ the first bit. And it will also be connected to

1111011, because they differ in the second bit and so on. 

(Refer Slide Time: 07:59)

So, now let us actually look at how that hypercube looks and it is this is an example of a

four-dimensional  hypercube.  So,  notice  that  each  node  in  this  in  this  hypercube  is

denoted by a four bit string that is its id. And let us see this, this, this is this node right.

So, who are its neighbors, it is connected to this node. And if you notice they differ in the

first bit and so that is why they are connected. And let us take for example, this node,

they differ in two bits, so they are not connected right. 

So, this is how of an n-dimensional hypercube looks like ok. So, it is it gets a little hard

to visualize as the dimensionality increases, but for now the only thing that you intuition

that you need is two nodes are connected as long as their id is different 1 bit.



(Refer Slide Time: 09:03)

So, this is the network topology or structure. And we want to also understand some of the

rules  by  which  this  network  place.  So,  it  is  a  synchronous  network  which  means

everybody has a global clock, it  is like a conductor saying this is time step one and

everybody does something, then the conductor says time step two and somebody said as

in the next step occurs and so on. 

So, everybody follows the same clock ok. And if you look at any edge in the network at

most one packet of information can go through that network per time step ok. This is this

is where congestion issues start to show up this is the restriction,  but it  is a realistic

restriction  and  so,  if  this  restriction  was  not  there  this  problem  would  not  be  any

interesting what we are whatever we are going to study ok.

And what so now you may ask if only one can go and an a bunch of packets are waiting

over here how do you handle that well just put them in a first in first out queue ok. This

first in first out queue is there is one queue for every edge incident at this vertex. So, for

every edge, there are a bunch of packets waiting to go along that edge. So, those packets

will be put in a queue, and they will be sent out one by one along that edge. So, for each

vertex, they will actually be n queues in that vertex. 



(Refer Slide Time: 10:34)

So, this is the permutation routing problem this is the problem that we want to solve in

this hypercube network setting. Each node has a packet each node i has a packet p sub i

ok. And what do you want out of this at the end p sub i each p sub i should which is

starting at node I much must reach another node pi i and this pi is a permutation. So,

basically everyone will start with the packet, and everyone will end with a corresponding

pi packet all right. Pi is a permutation. You want to the goal is to minimize the number of

rounds required to get this permutation routing to be completed ok.

And you can sort of see the issue here that there are if each node has a packet, there are

capital N number of packets, they are all kind of jostling with each other in order to

reach their final destination. Remember along each edge only one packet getting go per

time steps. So, if there is too much congestion that takes place you have to wait along the

way its several steps and so the number of rounds totally needed in order for all the

packets to reach their corresponding destinations can become uncomfortably large, and

that is what you want to try and minimize.



(Refer Slide Time: 12:01)

So, let us start with the bad news first. The bad news is that we are interested in oblivious

algorithms.  So,  oblivious  algorithms  means  these  are  this  is  a  very  natural  class  of

algorithm so in the distributed setting. If you have a packet that is has to go from S to

some T, so T is basically pi of as the permutation point at which it has to go. This route

that it takes should only depend on S and T ok. 

This is this makes sense because in a distributed setting you do not know what other

packets are doing you do not know what others packets source and destination pairs are

and things like that. Those should not be part of your concern. If you are if you are a

packet going from S to T your path should only depend on S to T, and this is a very

natural restriction. So, we are only interested in oblivious algorithms.

And let us focus first on deterministic algorithms and let me state the bad news. If, so let

us fix any deterministic. Algorithm you come up with any algorithm that you can think

of. And any network of out degree n, so the degree is bounded by this lower case n. And

of  course,  there  are  total  of  upper  case  n  number  of  nodes  they  always  exists  a

permutation basically this pi that defines for each starting vertex where the packet should

end, there always exists a permutation which will force the algorithm to take at least

omega of uppercase I mean square root of uppercase N over lowercase n. 

So, you can ignore this is for understanding purposes; the lowercase n is a small quantity

its log of the uppercase n. But what matters mostly that you need to focus your attention



on this its dependent on the square root of uppercase N ok, so that can be quite large ok.

So, we want to try and minimize that ok. This is uncomfortably large. 

(Refer Slide Time: 14:12)

So, naturally we want to try to see if there is some randomization we can do.

(Refer Slide Time: 14:17)

So, here is what my good news will be.  So, there exists a randomized algorithm for

permutation routing on the n-dimensional hypercube, it routes all the packets to their

destination in O of n a lowercase n number of rounds ok. What used to be square root of

uppercase N divided by n is now become just  log of that.  So, if you if you want to



roughly understand what the difference is, so let us say you have n capital N equal to 1

million ok, square root of N is 1000 ok. 

But lowercase n is just the number of bits needed to represent 1 million, so that should be

like I do not know 20 something; like that so small. So, you see that this is a significant

improvement of course, we are ignoring constants here, but constant should not play too

much of a role here ok. And this is guaranteed with probability 1 minus 1 over uppercase

Nm so that is with high probability. So, this is the good news.

(Refer Slide Time: 15:36)

So, let me give the an algorithm ok. This is called the bit-fixing algorithm a very natural

algorithm to route the packets. So, remember each packet is starting from a node and so

let us look at a particular packet it is starting at a node that has this address a 1 through a

n. And it has its destination is this location denoted by this address b 1 through b n ok.

So, let us work through an example a simple example let us say is 1011, and it has to let

us say its destination is 0100. These are two nodes right in the in the network, it should

probably in the nodes ok.

So, from here, there will be four neighbors, but what the bit-fixing algorithm says is you

start from let us let us count the bits from left to right. So, let us start from the first bit are

the two bits different from where the packet is now and where it finally has to go yes. So,

then you fix that bit that bit alone change you means that you have a neighbor where that



bit alone is different right. So, you go to that neighbor ok. So, you go to that node. So,

this neighbor of that first node where the first bit alone is different. 

Second bit again is different between where it currently is and where it finally, has to go.

So, then you again fix that bit. So, it becomes 01 1 1. The third bit again needs to be also

pretty much all of them need to be fixed in this case. So, 0, it goes to 01001 and then

finally, you fix the last bit you get to the destination ok. So, that in this manner you go

from one node to its neighbor by just fixing bits from left to right ok. Why is this not

good enough, what sort of an algorithm is this?

Student: Deterministic, deterministic.

(Refer Slide Time: 17:51)

It is a deterministic algorithm, or what do we know about deterministic algorithm. So, it

is always going to take square root of upper N upper case n divided by n number of

rounds. So, it is a it is a very nice looking algorithm very simple clean algorithm, but it is

not good enough why because its deterministic and as soon as it becomes a deterministic

algorithm you have this bad news scenario ok. This of course, keeping just to keep in

mind this is done by every packet because every packet has a starting location and a

destination location. 
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So, how do we salvage the situation; again now we have to insert some randomization

into this right. So, how did valiant achieve this it is a very very nice algorithm it just

basically takes advantage of bit fixing, but sets it up in a randomized fashion, but sets it

up in two phases and this is the beauty of this algorithm. So, recall that each packet p

must be routed from its source to its destination d p, s p to d p. 

Here is what you do so that in the first phase what does p do this packet p, its routed

from its source to a random destination completely randomly chosen destination using

bit-fixing.  Because now source is  well  defined it  is  it  is already where the packet is

starting from you just pick a random n bit string that tells you the random destination that

this packet has to go to. And do you know how to go there yes you do not want to bit fix

your way to that location.

And  then  phase  two  from  that  random  location  you  make  your  way  to  the  final

destination. So, it is a very very simple algorithm; it is just two phases of the bit fixing.

So, each packet just starts from its current location and goes to a random location from

that random location it goes to the final destination, and both of them work via bit-fixing.

So, bit-fixing itself then work, but it we have salvaged ok. It is it is a permutation routing

right.

So, s  p so basically  d p is  pi  of s  p each face is  not  a permutation  routing you are

absolutely right.  So, there can be collisions on the receiving end. So, multiple nodes



could choose the same r p yeah that is the possible possibility that is completely ok. So,

that depends on the local memory of the of each node and that there is usually some

because  we have any way have  to  maintain  the  queues  and everything in  that  local

machine right in that machine. So, that is not the problem. The problem is in the as when

you go through the links you can only send one by one.

(Refer Slide Time: 20:36)

So,  this  really  is  the  algorithm  any  questions  on  the  algorithms  ok?  So,  hopefully

everything is clear its basically let us just focus on the analysis in the next segment in

this segment we have just basically seen a very simple algorithm and at least the first

time I saw I saw it, it was counterintuitive to me. In some sense its intuitive in some

sense, it is counter intuitive. So, so it depends there is a subtlety in here

Student: (Refer Time: 21:01).

Yeah, there is a subtlety here if you define the algorithm so that face one has to complete

before phase two starts then they would have. Even if one reached before the other it

both will wait in the destination until its time for phase two to start and then the phase

two will start, but then you can you can actually the other version where the. 

Student: Perfect.

You do not wait is also perfectly legal.



Student: Perfectly legal.

It is cleaner, but even if there are collisions, it is not a problem. There will be collisions

there was surely be collisions they will spread out, but we will actually be studying how

to analyze the exact issue that you are talking about. There will be lots of nodes good

fraction of them of the nodes will not receive any token at all any packet at all which

means that some a good fraction of them will have collisions.

And in fact you can also analyze how many packets will end up in I mean the maximum

number of packets that will end up in some node and that will turn out is it is actually

something like n in this case lower case n over log n roughly speaking. And we will

analyze  these  things  in  forthcoming  lectures  ok.  So,  this  is  basically  what  you  are

alluding to is balls and bins and alley.

(Refer Slide Time: 22:33)

So, of course, we have to ask ourselves how do we establish that this is a good algorithm,

it is a very clean algorithm neat algorithm, but that is what we are going to see in the

next segment ok.


