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Segment 1: Parameter Estimation

So,  we are  going  to  start  a  new module  today, in  this  module  assisted  basically  an

extension of module 3 we are just going to look at some applications of a tail bounds;

particularly from the from an algorithmic and computer science point of view, the first 1

is estimating a parameter. So, let me give us some.

(Refer Slide Time: 00:38)

Give ourselves some context, we have looked at all of these inequalities we want to look

at the following problem.



(Refer Slide Time: 00:51)

So, what is given you are given a population of N people. So, think of the country like

India or something like that see and you are given 2 small constants epsilon and delta

and you want to find the fraction of the people who like something say nutty chocolates

ok. So, more practically be used to estimate for example, people who want to vote for or

against  a  certain  policy  or  something  and  what  is  this  epsilon  and  delta  they  are

specifying  the  accuracy  with  which  you  want  to  estimate  this  parameter  p.  So,  in

particularly you want an epsilon delta approximation of the parameter p ah.

What is an Epsilon delta approximation? It is basically an interval given by some p tilde

minus epsilon to p tilde plus epsilon, so epsilon is the error term and what is the what

role  does  delta  play  it  1  minus  delta  is  often  called  the  confidence  interval  your

estimation;  should be  correct  with probability  at  least  1  minus delta  another  way of

stating that is that your estimation can be incorrect with probability at most delta ok. That

is the way I have stated it in this particular case ah.



(Refer Slide Time: 02:16)

So, everybody clear about this problem statement because, very simple problem you just

need to estimate the fraction of the people who like something and the nice thing is the

algorithm we are going to consider for this case is extremely simple, we are just going to

run a for loop N times and each time we are going to sample someone uniformly at

random and independently and ask them do you like nutty chocolate or not; if they like

nutty chocolates we are going to increment the counter otherwise we do not.

So, then what we do we basically estimate p tilde, we estimate p and denote that estimate

by p tilde as just simply X over N, after we have iterated through some small N number

of samples. So, the algorithm is very straightforward the only question that we need to

worry about is what should the value of N be because, obviously if you just sample 1

person you are not going to get an accurate estimation and if you are going to sample all

the upper case N number of people, that is not very useful either that is too difficult. So,

the population of India is what some thousand 1.6 billion, no 1.3 some billion I think ok.



(Refer Slide Time: 03:44)

So, the question is we have let us let us play with our intuition a little bit, let us consider

2 countries India and Srilanka. I mean we have been having cricket matches recently and

we  have  been  doing  pretty  well.  So,  feels  good  we  have  1.324  billion  people  and

Srilanka has 21 million people, how does this N change between the 2 countries that will

be an interesting question to ask right. So, out of curiosity how much what proportion

how much more samples do you need for India, but a common intuition is that ok. So,

country like India needs a lot more effort to get the estimates right, so let us let us see

what happens.

(Refer Slide Time: 04:32)



So, here going back to the algorithm your X is the total number of people who said they

like nutty chocolates right. So, X is a random variable here because that depends on p

which is a random variable, why because you the population is fixed there are upper case

n number of people, but what we do the randomness comes from the fact that we are

sampling from this population and this p tilde represents the fraction of the people in the

sample who liked nutty chocolates ok, so and X so basically we remember we calculated

p tilde to be nothing but X over n and that we are just rewriting it this way here.

 However, what is the expectation of X this is a well defined quantity at the even though

we do not know p, p is a fixed parameter it is an exact fraction of the number of people

in say India who like nutty chocolates. So, this p is a fixed quantity so the expectation of

X is also a fixed quantity we do not know it, but it is fixed in this algorithm what are the

ways in which things can go around again, once again we need to figure out what the bad

events are and make sure that the bad events happen with low.

Probability 1 remembers our estimation is in the we are going to give the range p tilde

minus epsilon 2 p tilde plus epsilon. So, anything below or above that range is bad and

this is actual p value being less than the left end of the bound and this is the p value

being to the right of the bound ok, these are the 2 ways in which things can go over ok.

So, let us try to formally state these 2 bad events again if the pattern, I hope you are

seeing is repeating itself here you are clearly specifying what the bad event and you are

trying to capture that bad event in a way that can be fit into a known tail bound ah.

So, here what is how do we define this bad event well let us start with X ok, X we know

is in p tilde that is that we know and another way of getting this now you just take this

equation p greater than or inequality rather p minus epsilon and you multiply throughout

by N and here you have then p tilde term. So, you isolate the np tilde term it is be less

than here ok, you isolate then np tilde term and so on the right hand side you will get np

and this term will go here plus N epsilon ok, so that is what you get over there alright.

So, now you can in this you can take out np, so you will get 1 plus epsilon by p, but np of

course is nothing but E of X expectation of X times 1 plus epsilon by p ok. So, this

ultimately what is your what is your bad event written in the form that can be captured

by chernoff bounds X greater than expectation of X times 1 plus epsilon by p, remember



that is the way in which you want chernoff bounds X greater than some 1 plus delta

times mu.

So, you notice that we have gotten exactly the form that we, the same thing can be done

with the other bad event as well ok; you will again get X to be less than some 1 minus

delta times the expectation of X ok. All  of this is basically taking the bad event and

rephrasing it in a manner that it can where such that it can be plugged into the chernoff

bounds ok. So, then we can do that ah.

(Refer Slide Time: 09:32)

So, our analysis basically is the following what is the probability that either 1 the bad

events occur ok, there are 2 bad events that we listed it at least 1 of them should occur;

what is the probability well that is equal to the union of the 2 probabilities there are 2

probabilities are shown in red over here and in the previous slide we worked out a formal

way in which we can express those bad events in a manner a mean able to chernoff

bounds. 

So, that is what is written over here these 2 things and now this is the union of 2 bad

events and if you re call the union bound if you have the union of 2 bad events, that is at

most the sum of the individual probabilities of those bad events and so now you can

simply apply a chernoff bounds in the first 1 it is.



Let us see here you have mu and this plays the role of delta just to be clear, this delta is

different from the delta we are using in this, in this segment this is the delta coming from

the way we stated chernoff bounds now. So, apologies for reusing the same delta, so then

if you recall the chernoff bounds so what does it say probability X greater than 1 plus

delta times mu is less than or equal to E to the minus mu delta square by 3, you recall

this was 1 turn off bounds and that is that is what is showing up over here for instance.

So, here it is 1 plus delta you have the 1 plus epsilon by p, so instead of it.

Student: (Refer Time: 11:40).

So, here Oh yeah trying to see why that and yeah you are right. So, let us make sure that

we are not missing something, yeah I think there is some title here yeah. So, epsilon

square by yeah that is right, so this epsilon square here also there will be an epsilon

square the p term there will be a p square at the bottom, but there will be a p at the top as

well, so one of the p is will get cancelled so as I miss the square over here.

So, the square will continue to play role, so this is square over here ok. So, this is just I

am approximating instead of dividing by 2 p in the exponent, I am just if you divide by 3

p you only get a larger bound. So, since we just want an upper bound I am just calling

these 2 in individual terms as 2 times E to the minus N epsilon square by 3 p and recall

that we want to make sure that this probability is at most delta remember this is one of

the input parameters the probability that we will get into a bad event should be at most a

delta ok, so that is where this delta shows up.

So, now, let us let us try to work with this inequality, so here if you take the log on both

sides. So, first let us take the 2 to the other side it is delta by 2 and then let us also do 1

more thing to get rid of the negation let us make this let me write it over here. So, what

can we do about this I can say E to the n epsilon squared by 3 p should be greater than or

equal to 2 by delta ok. I am just taking the reciprocal on both sides, now I can take the

log on ln on both sides rather. So, then what I will get is an I will get an epsilon square

by 3 p, so what I am going to do is this I am going to take the epsilon square by 3 p to the

other side. So, I am going to make that 3 p by epsilon squared and there will be ln over

here ok.

This is what we get over here and that gives us how do we interpret this. What does this

even mean? it just means that as long as we our N value is at least this much we are fine,



but there is 1 pesky issue there is this p showing up, p is really what we want to estimate,

but there is a p showing up there what do we do that yeah exactly. So, you just want an

up a large enough value of n, so simply get rid of the p and you are still going to you

your.

Rest your value of N is continue it is going to continue to be sufficiently large right ah.

(Refer Slide Time: 15:27)

So, basically at the end of the day if you want to look at it what you have is you have

gotten rid of the p here, what you have here is a sufficient bound on N to ensure that you

are going to get an epsilon delta approximation this of course this  type of. Which is

which brings us to the issue that we talked about, if you look at this Bharath intuition

was correct, what is the surprising fact over here.

There is no occurrence of capital N which means that whether you are you are working

in Srilanka or in India, the capital N does not occur in this bound. So, it is only going to

your estimation is only going to depend on epsilon and delta not on n. So, that is a fairly

often a surprising fact because, you are where you know what you may fail to realize is

that regardless of the size of the population your algorithm. Now focus is just based on

just sampling and each time you are going to sample with certain probability p right

sorry, you are going to get someone who likes nutty chocolates through some probability

p; that does not change based on whether it is sri lanka or India that is the that is the

intuition that is going over here.



Student: (Refer Time: 17:10).

That is correct, so you are absolutely right. In fact, that does bring me to the.

(Refer Slide Time: 17:16)

Conclusions like where I am you know wont emphasize that it really heavily depends on

the fact that we are doing uniformly at random and independent samples and as you can

tell from recent past, predictions go wrong all the time right and we can also take a leaf

from Niels Bohrs book and say look prediction is very difficult especially if it is about

the future.

Student: (Refer Time: 17:50).

So  yeah  sometimes  you  know  when  your  memory  as  you  start  getting  older,  your

memory becomes bad and even the prediction about the past is coming difficult [laughter

]. So, with that we conclude the this segment.



(Refer Slide Time: 18:09)

So, next again we are going to see 1 more simple application of chernoffs bound and we

conclude with that.

Thank you.


