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Three and now we are going to see Chernoff bounds it is a family of bounds it is not just

one bound, but family of bounds they are tied together by the technique the way we

would  derive  these  bounds  and  an  important  concept  along  the  way  we  will  try  to

understand the notion called moment  generating functions.  These moment generating

functions they are quite nice; because they capture all the moments. If you recall the

moments  the  nth  moment  is  expectation  of  X  to  the  n  this  one  moment  generating

function is like a bag that just collects all of them together.

So,  if  you  recall  the  Markov’s  inequality  required  the  first  moment,  Chebyshev’s

required  the  second  moment.  Why  is  Chernoff?  So,  powerful  because  it  includes

information of all  the moments  and as it  turns out if  you have all  the moments  you

actually uniquely define the random variable. So, it is this moment generating function

actually capture. So, characterizes random variables uniquely. So, that is why this is the

significantly more powerful than Chebyshev’s inequality and we will work out Chernoff



bounds for the sum of Poisson trials it is basically a generalization of some Bernoulli

trials which is what we call binomial distribution it is a slightly more general version for

which we will work out the Chernoff bound ok.

So, here is the Chernoff bound technique at a very very high level. Let us set that in the

backdrop of Chebyshev’s. How did we prove Chebyshev’s inequality? We took a random

variable X ok.

(Refer Slide Time: 02:14)

Yes, what is X minus E of X the probability of X minus E of X greater than or equal to a

well we did not know how to handle that, but we squared it and when we squared if you

recall the event stage this essentially the same, but now you are able to apply the second

moment right and that is what we did for Chebyshev’s ok.

(Refer Slide Time: 02:44)



We are just going to push this further to the extent possible. What we are going to do is

not square it, but take the exponential ok. So, now, let us say you want the probability

that X exceeds a certain quantity a; what we do is we pick a suitable t which is some

quantity greater than 0 ok; and we ask when we say you know we morph this event over

here X greater than or equal to a to E to the t X greater than or equal to E to the t a; so,

basically where it takes exponentiating on both sides.

So, the inequality stays the same. So, the event is really capturing the same thing. So, to

have  equal  probabilities;  and  So  you  can  easily  see  the  analogy  between  this  and

Chebyshev’s inequality it is essentially the same idea, but here we are pushing into the

limits not just squaring it with exponential and the nice thing here is now for the right tail

this is what what we have here is a right tail X we were asking what is the probability

that X exceeds some position a some value a and that is giving you the right end of the

tail.

For the left end of the tail all you need to do is pick a t that is less than 0 and when you

say pick a t that s less than 0 then you can ask what will happen what you do instead of

greater than or equal to is you say what is X was the probability of X less than or equal

to a. So, that will be the left tail and for that remember your t is going to be less than

zero. So, what will happen over here when you apply this inequality is well you how do

you convert the less than or equal to sorry to a greater than or equal to you will raise it to

the power E to the tx in this context, but t being less than 0 your what happens over here

is you will have a negative in the exponent ok.



So, the inequality will appropriately fall into the greater than and which means that again

you can apply Markov’s inequality and so on and so forth right and that is exactly what

we are doing here. So, for the moment let us not worry about the left tail let us continue

to  focus  on  the  right  tail.  So,  if  you  what  you  can  now do  is  apply  the  Markov’s

inequality. So, what we have is a random variable here and we are asking; what is the

probability that it is more than some positive constant and you will you can then apply

Markov’s inequality? So, you see how Markov’s inequality is still the basis upon which

all the other tail bounds have already arrived, but nevertheless we were able to do fancy

things now ok.

So, now, we have to complete the story. So, we need a good bound for this numerator

over here the expectation of E to the t X and that is something we will focus our efforts

on ok, but if we have the right bounds for the numerator what we can do is we can play

with the value of t. So, this is true for any t greater than 0 which means that for the best

bounds you may need to play with the choose the right value of t ok.

And then hopefully you know the terms will cancel out nicely; and you will get a bound

that is a Chernoff bound. Basically, this is a technique a general technique to deriving

these sort of bounds and any bounded derived using this general technique of taking the

random  variable  exponentiate;  and  asking  what  is  the  probability  that  it  exceeds  a

particular value; then taking the exponentiation on both sides of that event and applying

Markov’s  inequality  and  bounding  the  numerator.  So,  these  this  is  a  very  standard

technique this technique is called the Chernoff bound technique and any bound derived

from it is the Chernoff bound ok.

So, just to recall, now we have to worry about this expectation of E to the t X ok.
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And as it turns out that fits very nicely with a well known notion called the moment

generating function what is the moment generating function of a random variable X it is

exactly what we want it is denoted M X whether this has to be a capital X M X of t is

defined this equal to the delta on top of it is defined is defined as the expectation of E to

the t X, this is exactly what we want and we have a quantity, we have a well defined

notion the moment generating function. Let us try to understand this object this moment

generating function.

(Refer Slide Time: 07:51)

First theorem about the moment generating function; it captures all the moments this is

something that we talked about a little while ago right the Chernoff bounds why is it. So,



powerful it is capturing all the moments not just the first in a second moment. So, why is

that the case and it is under some conditions. So, here the condition is that when we have

expectation and differentiation we should be able to interchange there the way we apply

them. If we can interchange them then we have this theorem ok. So, basically what are

we claiming here; this expectation of X to the n this is the nth moment you simply get

that by taking the nth derivative of the moment generating function; this n this is the nth

derivative of the moment generating function. Then evaluate it at the position 0 ok. Then

you basically by doing that you get the nth moment of the random variable X; that is the

nice thing. So, basically what is happening here is that the moment generating function

in it is its somehow capturing all the moments when you take as you take the derivatives

each derivative evaluated at 0 gives you the appropriate nth moment.

(Refer Slide Time: 09:20)

The proof  is  quite  simple;  you look at  the  nth derivative  of  the  moment  generating

function and remember this one important thing to notice is that you are you are taking

the nth derivative not with respect to X, but with respect to t ok. So, dn by d dt to the n.

So, that is the end of the derivative of well; what is the moment generating function? It is

expectation of E to the t X right. So, you apply that and remember we have said that

differentiation and expectation can be interchanged. So, I am just interchanging it and

taking the differentiation inside and taking the derivative.  So, here derivative the nth

derivative  of E to  the t  X is  X to the n E to  the t  X this  is  remember  definite  the

derivative with respect to t ok.



And  now  you;  so  now  that  you  have  this  form  you  can  just  up  start  applying  or

evaluating this expression at t equal to 0. So, when you evaluate at t equal to 0 essentially

this term will vanish away you will get E to the 0 X and that is just a 1 ok. So, you will

just be left with E to the expectation of X to the n and that is what we have over here. So,

the nth derivative evaluated at 0 is expectation of X to the n which is the end.

(Refer Slide Time: 10:40)

Let us look at one more one specific example where this is applied ok. So, now, let us go

back to our favourite Bernoulli random variable. We just want to confirm this; basically

what are we doing here.

(Refer Slide Time: 10:53)



We are taking the nth derivative up evaluating at  it  0 we need to be able  to get the

moments ok; and let us just test it out for a very simple case this is the simplest possible

case that you can think of. So, what is the moment generating function that is expectation

of E to the t X and that; what is this expectation of E to the t X? 

Well, essentially the variable E to the t X what is the probability I mean with probability

p it is going to take the value E to the t, because X remember this is E to the t X is

defined based on X;; and X will be 1 with probability p and 0 with probability 1 minus p

when X is 1 you are going to get E to the t 1 which is just E to the t that is. So, you get p

E to the t plus when X is 0 you are going to get E to the 0 which is a 1; so you when that

happens with probability 1 minus. So, that is how you get this expression for the moment

generating function for; and then you can play with it a little bit and apply the fact that 1

plus X is at most E to the X and you can get it to be of the form E to the p times E to the t

minus, but the most for now the form that we want is this what was what is shown in

yellow ok.

So, now we have a moment generating function. Let us take the first derivative and when

we take the first derivative of this expression this is with respect to t. So, you will just be

left with p e to the t and when you evaluate it at t equal to 0 E to the t becomes a one and.

So, you are left with p and that is expectation of X if you recall this is fitting exactly the

theorem that we have just proved if you take the first derivative up and apply it at value

equal to 0, you get back expectation of X you can do the same thing with the second

derivative ok. I will leave you to work that out on your own time, but essentially the



second derivative I mean the second moment is for the Bernoulli  random variable  is

going to continue to be p and you are going to get the same.

(Refer Slide Time: 13:05)

So, the other thing is that not only does it capture all the moments when it captures all

the moments it fully defines the random variable and this we are just going to state the

theorem and going to skip the proof. So, what is the theorem stating if you have two

random variables  have X and Y; and if they are moment generating functions in the

vicinity of 0 what does what does that mean when t is around 0 it is between my delta

and  delta  if  both  those  moment  generating  functions  are  exactly  equal,  then  we are

guaranteed that both X and Y are essentially the same distribution same essential the

same ok. So, this is this tells you once I mean if anything this tells you that the moment

generating  function  really  gets  to  the  heart  of  what  a  random variable  is  really  can

characterize  random variable  and one  more  nice  theorem before  we get  back in  the

Chernoff bounds ok.

(Refer Slide Time: 14:00)



What is this if you this again is a way to exploit independence of random variables ok.

So, you have two random variables X and Y. X plus Y itself is a random variable. So,

there is this well defined notion of the moment generating function of X plus Y and that

is this left hand side right ok. The nice thing is that is just the product of the individual

moment generating functions; when X and Y are independent this is not true when X and

Y are not independent, but when they are independent you have this ok. This is very

useful because later on when we are trying to bound say the binomial random variable or

sum of Poisson random variables or whatever you will exploit independence and this is a

key crucial requirement for that ok.

So, you why is it ok. So, you take the moment generating function for X plus Y you

apply the formula that s nothing, but the expectation of E to the t times X plus Y and you

expand it out you get E to the t X times E to the y, but the nice thing is now these are two

random variables E to the t X and E to the t Y if X and Y are independent then E to the t

X and E to the t Y are also independent and if they are independent there the expectation

of their product is the product of their expectations and that is what we are over here and

that  is  by  independent  which  ok.  What  is  each  of  these  multiplicative  terms?  It  is

nothing, but the moment generating function of X and is this clear what we have talked

about. So, far; any questions.

(Refer Slide Time: 15:52)



Now, we are ready to get back into the Chernoff bounds we will work out a particular

example it is basically the sum of Poisson trials this is if you recall what is the binomial

distribution  it  is  the  sum of  n  Bernoulli  trials  the  sum of  Poisson trials  it  is  just  a

generalization it is just the techniques. So, everything that we say from now on; with

respect to Poisson trials is going to be applicable to Bernoulli binomial distribution as

well, but; in fact it is going to be a one step more general ok.

What is the general part of it? In when you take the binomial distribution each Bernoulli

trial must have the same probability of success p when we go in to sum of Poisson trials

we are generalizing we are allowing each Poisson random variable X i to be 1 with some

probability  p i  and 0 with some with probability  1 minus p i  and these p is  can be

different for each X i. So, what is X equal to X 1 plus X 2 plus and so on up to X n; each

one can have it is own probability of success ok. So, that is the general nature of some of

us on trial. So, of course, if all of these p is are equal, you get back binomial distribution.

Now, that we have established that to the we know what the Poisson some of us on trials

is essentially a binomial distribution generalized a little bit.  Let us workout Chernoff

bounds for this X which is the sum of Poisson trials ok.

(Refer Slide Time: 17:29)



So, we will need remember to apply the Chernoff technique; we will need E to the t X

which means that we need the moment generating function ok. So, the nice thing now we

immediately start applying the theorem based on independence. If you want the moment

generating function for X, it is basically the product; because these individual X i s are

independent.  The  moment  generating  function  for  X  is  the  product  of  the  moment

generating functions for the individual X is. So, what is the moment generating function

for the individual X i? If you recall  we worked this out a little  while ago; when we

worked out the Bernoulli trial with respect to probability of success p; we worked it out

to be of the form e to the p i times E to the t minus one a few slides ago.

So, we are just applying that and so now, you have the product of several exponentials

which means you can take the e to the you can take the exponential of their some of their

some of their this product of the exponentials is just e to the sum of the X. And well what

is that this e to the t minus one and I think this needs to be slightly clarified this it looks

like this e to the t minus one is in the subscript over here it is actually p i times e to the t

minus one this; this e to the t minus one can come out of the summation because the

summation is with respect to i.

So, you get e to the e to the t minus one if that if this comes out you will be left with

summation i p i what a summation i p i. What is p i? P I corresponds to random variable

X I; expectation of X i equal to p i. So, what is summation of over I p; expectation of X.

And; and we are going to denote that by mu. So, we have got the moment generating

function; which means now we can go back to the Chernoff technique and apply this.



(Refer Slide Time: 19:57)

So, let me let us before we start applying it; let me state the bounds that we can get only

one bound I am going to prove, the rest of them you you will have to proof your own I

mean the textbook has it. So, you kind of have to take some time to work through them

ok.

The first and if you recall; I said there are there is this one framework or technique the

Chernoff bounds technique and you can derive multiple bounds. So, that is why we are

going to give multiple bounds now ok. Now the first bound for any delta greater than 0

the probability; that X exceeds 1 plus delta times mu. So, just to give you give yourself a

picture for what is going on here. You have a random variable X this is E of X equal to

mu; you have this sum distribution and you are asking well and let us say this point is a 1

plus delta times mu. We are asking what is the probability that X will fall in this right

tail; and that is at most this right hand side quantity; E to the delta divided by 1 plus delta

raised to the 1 plus delta the whole raised to mu looks complicated, but there are nicer

forms this is why it helps to have multiple Chernoff bounds.

So, let us look at the second form. We have here we need to restrict delta to be at most 1.

What is probability X greater than 1 plus delta times mu again? Is the same story you are

you are basically trying to bound the right tail it is e to the minus mu delta square by 3 Y

and you hope this might look like just some mathematical jargon, but let us pause for a

moment to see why this is powerful in the binomial distribution; what is your mu? Mu is



the average right. So, if you have like 10000 coin tosses what is your mu it is 5000 and

where  does  in  the  tail  bound  probability  where  does  mu appear  mu appears  in  the

exponential and it is e to the minus mu ok.

So, as the as the mean increases the probability decreases exponentially ok. So, that is

the power of this Chernoff bounds; the probability of deviating from the expectation this

tail bound it drops exponentially. So, in that example this coin flipping example that we

have worked out in the past it this it will show up as e to the minus 5000 times delta

square by 3. So, these delta square and 3 are also relatively small quantities, but you can

immediately see as the number of coin flips goes larger and larger your probability of

deviating significantly from the mean drops very very quickly ok.

So, hopefully this intuition is making sense to you because that is very very important

this is this is what is telling you about the power of the Chernoff bound and one more

convenient form which it is.

Student: (Refer Time: 23:32).

Well, it is positive for the numerator it is positive also for the denominator and if the

denominator is dominating then it is going to be again having the same what is a third

form for some R greater than 6 mu. So, basically this is useful when you want to ask

what is the probability of deviating beyond 6 times expectation sum in some cases this

makes sense again you see this exponential drop probability if X exceeding R is at most

2 raised to the minus R.

Student: From the (Refer Time: 24:11).

Yes. So, that makes sense particularly for things like normal distribution.

Student: Yeah.

Things like that here it; so when you work with the standard deviation you are actually

working with Chebyshev’s inequality or some related equality and you can do that and it

is usually done, because you do not have a handle on the moment generating function

this is what you are saying is particularly true for a lot of fields, but in computer science;

we often we define the algorithm which means that we control what random variable?

What the random variables going to look like? Which means that we have more power to



in  our  hands? We can go in  to  Chernoff bounds and that  is  what  will  happen very

commonly; we end up being able to exploit Chernoff bounds.

Because we have access to all the moments and therefore, implicitly we do not explicitly

think about it all the time implicitly we have access to all the moments and so we will be

applying the more powerful techniques. And this is significantly more powerful than just

asking how many times away from; how many standard deviations away from the mean

you are? So, this is I think your question is also motivated by this right.

Student: Yeah.

This is just one convenient form; it might be useful in some cases where the mean is

small.  If  the  mean  is  small  then  you  can  ask;  what  is  the  probability  that  you  are

exceeding 6 times the small mean? Then it might be a this might be a convenient form to

use ok.  And again goes to say that  it  is  basically  the same technique  all  these three

bounds are derived using the same technique; it is just playing with the value of t, if you

recall  there  is  a  t  a  parameter  t  showing  up  in  the  derivation  of  Chernoff  bounds

displaying with a value of t and other mathematical minor mathematical juggleries you

get these convenient forms.

And so when you think about applying them; you just choose the most appropriate one

and typically the second form is the most commonly used form of this.

(Refer Slide Time: 26:17)



And as I said this the same technique can also be applied in the in the left tail as well we

will see that, but for now let us actually look at the proof. So, just to be clear all these

three have the proofs in the textbook. I am only going to go through the first inequality.

So, that we have one inequality nailed down; we know how to do it, but the other things I

still expect you to go through it on your own so.

We are now focusing on the first inequality. X greater than 1 plus delta times mu and

here delta is any value any positive value; and we will not need to prove that it is at most

this  right  hand side ok.  And again  we are going to  apply the  exact  Chernoff bound

technique that we have already seen before. We are just going to say what is X greater

than  probability  that  X  greater  than  1  plus  delta  times  mu  well;  you  take  the

exponentiation on both sides probability of e to the t X greater than e to the t times 1 plus

delta times mu is standard technique. Apply the Markov’s inequality. So, that is you get

expectation of e to the t X divided by the right hand side of this event ok.

So, but we already know this; we know remember we just a few slides ago we derived

the moment generating function for the random variable X that is nothing, but e to the e

to the t minus 1 times mu if you recall we did that ok.

So, I am just applying that over here. So, you get this you get this form over here. Now

comes the trick because now you have to choose a particular  value of t  that will  be

convenient for you and you see a lot of e to the t s and if you if you want to cancel things

out what do you do when you have E to the some lon of something you the e and the lon

cancel each other out, right.

(Refer Slide Time: 28:17)



So, that is the; that is what we are going to exploit. So, we are going to set t equal to lon

1 plus del and because delta is greater than 0 this lon 1 plus delta is also going to be

greater than 0.

So, which means we can apply it. So, going back to this form; if you apply if you apply t

equal to lon 1 plus delta; so essentially here you will be you will be getting lon 1 plus

delta. So, what will you get over here you will get e to the e to the t will become lon 1

plus delta you know it will it will e to the 1 lon 1 plus delta will become 1 plus delta

minus 1. So, it will be 1 plus delta minus 1 divided; now I M going to take the whole to

the mu separately and here e to the t will become lon you know 1 plus delta. So, and this

1 plus delta will be posted over here; which is exactly the form that we; so this is the first

technique. The other techniques in similar fashion will be derived and at; in fact, in this

case you look at the other you basically play with this form. This is one of the best forms

that you can get the other bounds are obtained by displaying with;

So, those are left as homework for you. So, now, let us any questions before I move on

and how this derivation works out.

(Refer Slide Time: 29:58)



This is just two forms for the left tail, that we have; again they look quite similar because

they are derivations are essentially of the same pattern. Now because it is the left tail you

need to consider delta values to be in the range 0 to 1 and you have these two forms

again here it is X less than or equal to 1 minus delta times mu. So, so you will essentially

what you are doing is this is your mu; this is going to be your 1 minus delta times mu.

So, you are asking what is the probability of this left tail. That is again at most some

quantity which is if you notice it looks very similar to the type of bounds that we have

and the second form is also their probability X at most one minus delta is at most e to the

minus mu delta square by two and usually this form is more useful and. In fact, you can

take the two left in the right tail the second form of them this.

(Refer Slide Time: 31:03)



In this case; it is this one we have something similar in the right tail as well we can put

them both together and apply the union bound and you can get a combination of both

right and left tails. So, this is here I because it is combination of right hand left tails you

have the absolute value of X deviating from the expectation to be greater than some delta

times mu is at most 2 E to the minus mu delta square by 3.

Student: (Refer Time: 31:28).

What is the time?

Student: divided by 2 or 3.

It is divided by 2; it is this happens to not be a typo, but when you apply the union bound

you are just a little bit relaxed about how you apply it.  The first one is I believe the

tightest, but it really is not. So, much about tightness in these cases because the tightness

usually just gives you some I mean typically the benefits just in constants the you usually

use the more appropriate question would be which one is the most convenient one of the

use of course, in some cases one might be convenient, but might not give you the good

enough bound, right.

So, the first one is usually the tightest because it is pretty close to what you want, but

what is also and the reason why I even went through the proof of the Chernoff technique

is that there are some cases where you actually have to redo the proof of the Chernoff

technique for a specific t value that fits the application. Remember this here we applied a



particular t value that; that nicely cancels things out and it is great for a general form, but

there are applications for which you really have to go through the derivation and choose

the appropriate t value and all that.

(Refer Slide Time: 32:54)

So, it is good to know the general derivation technique. So, we are now almost done;

only thing I want to point out now is, how this Chernoff bounds that we have seen so far

fares with respect to coin flips? This is the example that we have seen. And here; now we

are going to ask what is the; so X is the number of heads out of n coin flips ok. So, this is

essentially the binomial distribution and since we know even how to handle Poisson;

some of  Poisson trials  you we can  actually  handle  the  binomial  distributions  just  a

special case.

And so we want to ask; what is the probability that; so in the particular example that we

had n was 10000. So, the mean would have been something like 5000 right. And we are

asking what is the probability there it deviates away from the mean by this quantity ok?

And so let us work that out. So, this is this is just this is recall this is if you ignore the

constants essentially what you have is a square root of n lon n ok. So, it is basically if

you for a rough understanding of what we are talking about here? What is the square root

of 10000? well it is roughly a 100 right. So, we are asking what is the probability that X

deviates from the mean by more than roughly a 100 ok. If you just you can ignore the

constants in the lon term; lon is small constants are also small and let us see.



How do you work this out? So, here on the right hand side you need it to be of the form

delta times mu right. So, you should work out the appropriate. So, we on the left or what

we  have  over  here  is;  what  is  exactly  the  tail  bound  that  we  want?  We want  to

understand; what are these probabilities these tail probabilities? Ok, but now we have to

fit it to the Chernoff bounds form ok. So, now, what is your mu? Mu is n by 2. So, your

delta if mu is n by 2; what you have to do? To get the mu; to get the delta is just multiply

by n over 2 and also multiply by 2 over n. If you do that you get this will be your mu this

1 n o. So, basically let me write that a little bit more carefully over here what you do is

you multiply by n over 2 and you also multiply by 2 over n ok.

This n over 2 is nothing, but your mu. Whatever is left is your delta ok. So, that so now

we have all  other delta  and mu. So, we can apply the formula and if  you recall  the

formula it is 2 e to the minus mu delta square by 3. So, that is what you are applying over

here ok. And when you apply you get oops 2 over n. And for a similar range what did we

get out of Chebyshev’s? I think we got something like 1 over 9 or something like that the

probability of exceeding 5000 plus or my minus 160 we got was something like 1 over 9,

but now what are we getting we are getting 2 over n. So, this is like 2 over 10000 ok. So,

you see; how the tail bound tail probability is much tighter when you use the Chernoff

bounds.  So,  that  is  generally  the  idea  here  wherever  possible  you  want  to  use  the

Chernoff  bounds,  but  when  it  is  not  possible  you live  with  the  Chebyshev’s or  the

Markov’s inequality.
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So, with that we can conclude our segment for today. So, we introduce the Chernoff

bounds  technique  and  you  know along  the  way, we  picked  up  an  understanding  of

moment  generating  functions  we looked  at  some properties  and we  worked out  the

derivation of a Chernoff bound for some of Poisson trials at least one form of it there

were other forms that we have stated we have not actually looked at the derivations and

what we did was we applied it to the coin flips and we saw it is immediate how powerful

Chernoff is compared to Chebyshev’s I hope you can appreciate this difference. So, that

is  what  we  have  seen  so  far  and  in  this  module  we  have  seen  two  slightly  larger

segments. So, we have seen the analysis of the median algorithm in the last segment

which again like slightly longer module and this Chernoff bounds technique again is

slightly longer module five segments in this module 3 ok.
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So, in the next module what we are going to do is we are going to focus on applications

we  are  going  to  now  that  we  know  all  these  bounds  these  markers  in  equality

Chebyshev’s and Chernoff’s and things like that what we are going to do is start looking

at some algorithmic contexts  and we are going to start  applying them. So, hopefully

these bounds you know come alive to you. So, you will actually see how they help in a

computer science ok. So, that will be the topic for next module ok.

Thanks.


