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Tail Bounds I - The Second Moment,Variance & Chebyshev’s Inequality

So, now we are starting the second segment in module three we will see a few definitions

and introduce the next tail bound.

(Refer Slide Time: 00:21)

So, the definitions will particularly be that be the kth moment use that in particular the

second moment will be used to define something called the variance and a related notion

called  the  covariance.  Well  run  through some examples  to  understand the  notion  of

variance and use the variance to get a better bound called the Chebyshev’s inequality and

we  will  see  that  the  binomial  distribution  is  captured  better  by  the  Chebyshev’s

inequality that is the goal for this segment.



(Refer Slide Time: 00:58)

The kth moment is simply this its E the expectation of X to the k and the first moment is

something that you have already seen extensively that is nothing, but the expectation you

have X to the 1 is this E of X that is expectation ah. The second moment along with the

first moment yields the notion of variance and if you recall if you look at the second

moment X X squared; it is a convex function right.

So,  E of  X squared is  going to  be greater  than E of  X the whole squared that  was

Jensen’s inequality right and that difference if you recall when we looked at Jensen’s

inequality  we  claimed  that  the  difference  actually  measures  how  much  the  random

variable  deviates from the mean and that is essentially the idea that we are going to

capture here.

So, variance of X is nothing, but the expectation of X minus E of X squared this is one

definition. The other definition is E of X squared minus E of X the whole square ok. So,

E of X squared is  nothing,  but  this  second moment  E of X is  nothing,  but  the first

moment  putting  the  two together  you get  the  variance  ok;  these  two definitions  are

equivalent  and a  quick homework for  you would be the check that  they are in  fact,

equivalent. So, if you just apply the formulas and run through you should be able to get

them.



(Refer Slide Time: 02:29)

So, let us now try to understand what is variance of X plus Y where X and Y are two

random variables.  Remember this is in line with how we approached expectation we

tried to understand what is expectation of the sum of two random variables and we want

to know if something similar comes up with variance as well.

So, we apply the formula variance of X plus Y is simply the expectation of we want X

plus  Y. So,  X plus  Y minus  E of  X plus  Y which  when you apply  the  linearity  of

expectation is going to be minus E of X minus E of Y; the whole square that is variance

of X plus Y. And I have coloured it  up in yellows and blues because I am going to

regroup them in accordance to their colours it is its expectation of ah.

So, here I am going to take the square I am going to consider X minus E of X is one term

and Y minus E of Y as the other term. So, and then when you square it you are going to

get all these terms and then apply the linearity of expectation over all those terms; so, I

will just skip that. So, essentially what you will get E of expectation of X minus E of X

the whole square plus expectation of Y minus E of Y the whole squared times some

quantity. So, this you have expectation of X minus E of X the whole square is nothing,

but variance of X then you get variance of Y plus 2 times this strange looking object here

ok. And again another small homework is if you work this out its actually going to be

nothing, but E of X Y minus E of X times E of Y and this up strange object is called the

covariance.



This is if you look at this variance of X plus Y; we have shown this is variance of X plus

variance of Y plus something ok. We want to know whether that something becomes a 0

and what is the condition under which it  becomes 0 because that then relates  to the

expectation because there E of X equal to E of X E of X plus Y would have been equal to

E of X plus E of Y.

(Refer Slide Time: 04:42)

So, we and this object will become a 0 when these two terms are equal right. So, can they

be made equal what condition will they be made equal. So, let us actually work that out

E of X times Y; you apply the formula its summation over X, summation over Y; X Y

times the probability that X equal to X and Y equal to Y you apply all the formulas, but

then you are stuck here you do not know what to do with probability of X equal to X

intersected with Y equal to Y; except when the two random variables are independent. If

the two random variables are independent then you can replace it with X equal to X

times Y equal to Y in which case it works out to be E of X times E of Y alright.

So, essentially what; that means, is that when the two random variables X and Y are

independent, you will get something similar to the linearity of expectation otherwise you

will  lose  the  linearity  of  expectation.  But  nevertheless  we  can  this  quantity  this

covariance actually has some meaning because if its independent its equal what if it is

not independent there is some meaning to it.
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So, the best way to at least get some sense of it is to actually work out some examples.

So, let us take two random variables let us say they are outcomes of coin tosses and one

if its heads, 0 if its tails or something like that ah. In this case so, what is what; what is

this quantity of X Y minus E of X times E of Y should be immediate, it is 0 why because

these are two independent random variables ok.

So, let us do something silly here let us limit the sample space to one of these. So, let us

let us just focus on this one ok. So, this in this case we are we are not considering this

outcome. So, the sample space is limited to the three outcomes shown in red ok. So, then

now and let us say this is always X comma Y; so, what is the expectation of X here?

Expectation of X this one is a 0, 0 and 1; so, the expectation of X is one third right.

So, I am trying to work out this thing expectation of Y; what is expectation of Y? that is

also 1 by 3 and what is the expectation of X times Y? 0 why because at least one of them

is always remaining as 0. So, it is; so, it is going to be minus 1 by 9 and you can work

out  something  like  that  for  this  other  example  shown  here  as  well  ok.  Let  us  do

something similar what happened what about this case? So, let us again pick the one that

will ok.

So, here let us lets again work on this one ok. So, what is the expectation of X here? It is

going to be two thirds; what is the expectation of Y? It os going to be one third; what is

the expectation of X times Y? One third and so, that will turn out to be one third minus 2



over 9 right. So, it is going to be plus 1 over 9 that is what do you think would be the

case over here? Well E of X Y is in this case is E of X times; Y is 0 minus 4. Here if you

work it out its going to be what is that going to be what is E of X times Y? It is it is going

to be half minus E of X again minus 1 by 4 I think well 2 plus 1 by 4 Y we going through

all of this?

So, it is it is what we would we sort of guess is its ranging from minus 1 by 4 to plus 1

by 4 what is this measure telling you? So, why is this for example, this one by 4 what is

the intuition here as to why the covariance is maximized here?

Student: (Refer Time: 10:09).

 Yes it is like you have tied the two coins together. So, if one happens to be a tails the

other one also the tails. So, they are what is called positively correlated whereas, here

you have tied them together, but you have tied them. So, that when one appears tails the

other one appears heads always. So, they are negatively correlated when one is high the

other one automatically becomes low and so, on ok.

So,  this  covariance  actually  is  a  very  meaningful  object;  it  actually  measures  how

connected these two variables are ok. And when it is when they are completely dis or

unconnected or the technical term being independent it is equal to a 0 right. So, this is a

very useful object, but for our purposes we will stop at this level of intuition because

what we want to do is use this the notion of variance to go on to tail bounds, but I want

to make sure this notion is also clear in our minds at least at the intuitive level ok.
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So,  let  us  quickly  look at  some variances.  So,  let  us  look at  the  Bernoulli  random

variable.

(Refer Slide Time: 11:17)

So, X equal to 1 with probability p; 0 probability 1 minus p; the expectation of X is p,

expectation  of X squared is  also p.  Because when you square 0 1 random variables

remains 0 1 random variable right. So, the variance of X you run it through the formula,

you are going to get p times 1 minus p. The binomial  random variable  it  is just the



summation of n Bernoulli random variables. So, you just do to independence you can

just sum them up.

(Refer Slide Time: 11:52)

So, you get n times p into 1 minus p. Geometric random variable on the other hand is a

little bit more tricky because you do not have this neat summation you do not know how

long you are going to do this these iterations right.

Student: The binominal (Refer Time: 12:03) they are independent. So, we.

Sorry did I say dependent?

Student: No.

They are independent that is why the variance of Y can be written as the sum of the

variance of the individual X is. So, here I am using Xi’s to denote.

Student: How know like can you get a similar expression for covariance here like ah?

The covariances will be 0 right; oh I see you are you are talking about the more general

thing where you know it is not just X plus Y.

Student: (Refer Time: 12:35).



So, there is that will be a little bit more complicated thing, but its it is something that can

be written ok.

But since all of those covariance terms are going to be 0 because of independence. So, let

us so, we are kind of sweeping some details under the rug for now, but essentially since

all the covariance terms are going to be 0 just you.

Let us now consider the geometric random variable X is a geometric random variable

and it has parameter p. So, this means you toss a coin with bias p until you see the first

heads. And by now we should know that the expectation of X is 1 over p; you can work

that  out;  our  question  now is  what  is  the  variance  of  this  random variable  X? And

towards understanding the variance, we first want to compute E of X square and that is

what we are going to do now.

(Refer Slide Time: 13:40)

Let us consider what E of X square is and we will write it out using the law of total

expectation.  Now X squared  to  compute  X squared  you can  you break it  break  the

universe into two parts. The first part corresponds to where the first coin flip lands tails

and the second part corresponds to the first flip landing heads ok.

So, now our expectation of X squared is split into these two parts and of course, they

have to  be weighted  by their  corresponding probabilities  ok.  And let  us  look at  this

expression let us look at the second one the one where the first flip is heads. If the first



flip is heads then X is going to be 1 because you have seen the heads and therefore, you

are not going to toss anymore. So, then X squared is also going to be 1; so, this whole

term becomes a 1 ok. And we know the probability of flipping a heads is P because its P

biased coin ok. So, that leads us to just the term P because this is just going to be a 1; so,

the second term here is just going to be p.

Let us now consider this first expression; well the first the probability that the first flip is

a tails is 1 minus P and that we have and let us consider what happens when the first clip

is tails. After the first flip you really have to this is the geometric random variable; so,

there is this memorylessness property. So, you have to set aside the first coin toss and

then now again all start all over and wait for the first heads to occur. So, in essence after

the first flip has been set aside you really are in a situation where you have to repeat the

geometric random variable from the start.

So, that is why we have X prime which is another geometric random variable with the

same parameter p plus 1 this is this 1 is where you set aside the first coin toss. And then

you start over with a geometric random variable X prime that is and this whole thing is

within a square. So, it is going to be X prime plus 1 the whole square and we want the

expectation of that that is that is going to be this part ok.

And now we can since it is a square, you can apply the formula and then apply linearity

of expectation over and we will get be getting E of X squared plus 2 E of X prime E of X

prime square rather plus 1. And so, this when we expand it out we are going to get this

expression for  the  expectation  of  X square  ok,  but  that  is  just  the  expectation  of  X

square; the variance is given by the expectation of X squared minus the expectation of X

the whole square that is the formula for variance if you recall. So, if you apply that you

are going to end up with the variance of a geometric random variable with parameter p

being 1 minus p over p square ok. So, with that we have seen a couple of examples of the

of computing the variance for random variables.
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We are now ready to talk about this state inequality called the Chebyshev’s inequality.

And as you may expect the Chebyshev’s inequality depends on the variance of a random

variable.  So,  you in  order  to  be  able  to  apply this  inequality  you need to  know the

variance of that other random variable ok. So, let us take X to be any random variable

now notice that X need not be non negative X can be anything ok. And now a is some

parameter in this context we are not just going to bound the upper tail like we did in

Markov’s inequality, we are going to bound both the upper and the lower tails ok.

So, in precisely speaking we are interested in X minus E of X; the absolute value being

larger  than a.  And if  you think about  that  it  corresponds to  these regions within the

distribution. So, this is your expectation and you want to know you want to talk about X

minus the expectation of X ok. So, that can fall anywhere on this line and you are in

particularly interested in the event that this X minus E of X is greater than a.

So, its it has to be greater than a or because it is we consider the absolute value X minus

E of X has to be less than a these are the two things that we care about and that is why

these areas under these shaded portions is what we care about. And that tail is given to be

the  variance  of  the  random variable  X divided  by a  square;  so,  this  is  Chebyshev’s

inequality.
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And it is not hard to prove this. So, let us see how this can be proved; so, this is what we

want it is just straight from here. And inside this probability we have this X this E X

minus E of X absolute value is greater than or equal to a. Now just square the terms on

both sides of this inequality of this event ok; it is not going to change the event at all. In

fact, it has a nice property that it gets rid of the absolute and this square on the left side is

going to be non negative ok.

And so, this X my now what we have is the probability this term becomes the probability

that X minus E of X the whole square is greater than or equal to a square. And because

this is a positive term the non negative term, we can simply apply Markov’s inequality

and you can now see that all I mean this state inequality; this more fancy looking tail

inequality essentially depends on Markov’s inequality.

So, this is a positive term and there I an a squared I mean a parameter here a square in

this context. So, then we can apply Markov’s inequality and we get the expectation of

this is by the way random variable right. So, the expectation of that random variable

divided by a square that is this Markov’s inequality and what is the expectation of X

minus E of X the whole square? That is nothing, but the variance of X that is just another

formula for the variance of X and so, it is going to be variance of X divided by a square

which is exactly Chebyshev’s inequality ok
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And it the same inequality can be slightly rewritten. So, you can rewrite it in a couple of

forms; so, here is one form. So, if you write this tail as t times the expectation of X you

simply get the in over here it is going to be the square of whatever you put in over here.

So, it is going to be variance of X divided by t squared times E of X the whole square.

And now another form let us define a term called the standard deviation you know often

denoted sigma of X this is nothing, but the standard deviation ok. And that is nothing, but

the square root of the variance of the random variable. The nice thing about the standard

deviation is it is in the same units as that of the random variable X suppose X measures

say distance in meters variance is E of X squared minus E of X the whole square.

So, when you think about it the unit is going to be beta squared whereas, the standard

deviation is going to take a square root of the variance and therefore, it is going to bring

it back to meters ok. So, that is one of the nice features about the standard deviation and.

so,  it  is  quite  commonly  used  in  practice  and the  common question  people  ask  for

random variables is you know well whether they relate to how far I mean how large

standard deviation is because that tells you how much the random variable is likely to

deviate from its expectation.

So, what is the probability that a random variable will deviate from its expectation by

more than t times the standard deviation of X; that is going to be at most 1 over t squared

again simply by applying the Chebyshev’s inequality. Now here it will be what will we



have over here this will become variance of X divided by t squared times sigma of X the

whole squared, but that is essentially just variance is nothing but sigma of X the whole

squared. And so, those two cancel out you will be left with 1 over t squared that is how

you get this formula this inequality.

(Refer Slide Time: 24:44)

So, let us go back to the binomial distribution and test out this new tail bound that we

have this Chebyshev’s inequality. Remember that in our experiment in the last segment

we drew several samples from the binomial distribution with parameters 10000 and bias

0.5 in particular I mean. So, this means that the expectation is going to be 5000 and you

can  work out  that  the  variance  is  going  to  be  2500 which  means  that  the  standard

deviation is going to be 50 just 2500 square root of that ok.

So,  now  you  can  ask  what  is  the  probability  that  X  is  going  to  deviate  from  the

expectation by more than a 150 ok. If you recall  there was almost never I mean the

number that that we drew from the binomial distribution almost never went beyond 5000

650 I mean.

So, sorry 5150 or it almost never went below 4850. So, it was within the plus or minus

150 range and that is what we are asking and if you work it out it this is going to turn out

to be 1 over t squared. So, t here is 3 and that is going to be 1 over 9 and this is a much

better more accurate probability and Chebyshev’s is clearly more powerful than mark



curves in this context, but in a in a strange way it is essentially markers applied in a more

appropriate way that is exactly what Chebyshev’s says ok.

(Refer Slide Time: 26:40)

So, with that we come to the end of our segment on Chebyshev’s inequality ah. What we

did  was  we  introduced  some  definitions  and  some  terms  that  were  crucial  to

understanding Chebyshev’s inequality. And we stated and prove it and we showed that at

least in the context of binomial random variables it is it is a better way to bound the

random variable than Markov’s inequality ok.

(Refer Slide Time: 27:14)



And in the next segment, we are going to go back to the problem of finding I mean of

selecting the k element. In fact, it stays a little bit simple well just be interested in finding

the median of a given array of numbers, but this time the good thing is we are going to

ensure that the running time is o of n with high probability not just on expectation, but

with high probability. So, that is that is going to be the focus of next segment.

Thank you.


