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Tail Bounds I - Markov’s Inequality

So,  we  are  now  going  to  start  a  new  module.  In  this  module  we  are  going  to  be

concerned about tail bounds and what is that mean? Well we are interested in random

variables like running time space complexity and so on and so forth in algorithm design.

And we want to understand such random variables the first level of understanding we

have from the expectation of that random variable, but that is not all we want to know we

want to also understand how the random variable  behaves with high probability. For

example, the expectation could be small, but if an algorithm takes a lot of time every

once in a while, then that might be a cause for concern. So, we want to be able to argue

that the probability with which an algorithm takes a long time is very very small and tail

bounds help us make such arguments ok.

(Refer Slide Time: 01:22)

So, in today’s segment we are going to look at Markov’s inequality which is pretty much.

The first starting point for these sort of tail inequalities we will be studying Markov’s



inequality, using randomized selection as the as the example problem and we will then

prove Markov inequality, and then we will apply it to this randomized selection problem.

And we will also see how this Markov inequality plays out in binomial distribution, it

turns out that its actually quite weak in general, but under certain conditions it will it will

work and in fact, even though its weak in general, it is this is actually the starting point

for all other tail inequalities that we will be studying ok.

(Refer Slide Time: 02:15)

So,  without  further  ado  let  us  look  at  the  selection  problem.  So,  we  are  given  an

arbitrarily ordered array of n numbers. This is an input array arbitrary order and we are

also given a parameter k ok. And this parameter tells us specifies the index of the item

that we want to output in the sorted order. So, in other words we want to find the k th

smallest element in s, we would like this algorithm to be as simple as possible ok.
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So, here is the randomized selection algorithm means it is kind of like quicksort it is a

recursive algorithm, you take the entire array S and you have this parameter k. So, if case

is case values 10, we would want to output the tenth smallest element. So, of course, k

has to be in the range one to the size of the array.

So, now just like quicksort you pick a random number v and this v is picked uniformly at

random from the set S and now we partition S into 3 parts S left arrow are all the items in

S, that are less than v as down arrow is the numbers that are equal to v and S right arrow

are all the numbers in S that are strictly greater than v and this can be done by a single

sweep through the array S ok.
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And now it is quite intuitive to see where the kth smallest element will lie ok, if S down

arrow I mean S left arrow has a cardinality that is more than k, then in fact a greater than

or equal if the cardinality of S left arrow is greater than or equal to k then what we can

say is that the k th smallest element is in S left arrow. So, what we can do is simply

recurs into that region ok. On the other hand if k is strictly greater than the first two parts

the left arrow and the down arrow, then k is clearly in as right arrow ok. So, you recurse

into S right arrow, but you have to provide a parameter that is slightly updated. So, no

longer will k be the right parameter; you will have to remove S left arrow and S down

arrow. So, maybe a picture will help us. So, if you look at the array S what we have done

is we have split this array into S left arrow S down arrow and S right arrow.

So, the step 3 takes care of the case where k the kth smallest element is over here, step 4

basically takes care of the case where the kth smallest element lies in this region and

because we are going to recurse into this region alone, we have to remove this many on

this many numbers from k. So, that we only focus on item number whatever we get over

here in this region and of course, if 3 steps 3 and 4 dot work; that means, k is in this

region, in which case remember all of these items have value equal to k. So, you simply

return the, and this is nothing, but the pivot element v that we chose. So, simply we can

return v.
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So, this is how the randomized case selection works at least this algorithm, and we would

like to understand how good this algorithm is, and recall we have already looked at this

algorithm and and we know the expected running time of this algorithm, which is quite

good  ok.  And  we  understood  this  the  we  studied  the  expected  running  time  of  the

algorithm by defining these random variables L i and L 0 and you recall that L i denotes

the number of elements in the ith recursive call and L 0 is simply the number of items,

that we started with its basically the cardinality of S ok.

And we showed that the expectation of L i is 7 over 8 raised to the power i times m and

using that we were able to show that the expected running time T, is is this expectation of

the sum of the Li’s and scaled by r which captures the fact that a L i is just represent the

number of elements whereas, the running time might be a little bit more, but still only a

linear amount more. So, now we can you know solve I mean you can work out that this

expectation applying any additive expectation and things like that will work out to often.

So, we have seen this already, now what we really want to show in this, now is that the

run time is not too large with high probability. I mean when we when we claim that some

event  holds  with  high  probability,  what  we  mean  that  what  we  mean  is  that  the

probabilities of the form 1 minus 1 over and to the sum constant d ok.

Which means in another  way of saying the same thing is  that  the probability  of the

runtime being greater than or equal to some delta whatever the delta S times n log n

should be at most some 1 over n to the d ok. So, these are two equivalent ways of stating

this high probability claim you can if you are looking at the good event the runtime being

o of n, log and being small you need to show that it works out with high probability, but

if you focus on the bad event bad event is when the runtime becomes larger than some

quantity. So,  greater  than  some delta  times n log  n that  is  the bad event  if  you are

focusing on the bad even then the probability  of the bad even should be very small

should be at most 1 over n to the d, there are two equivalent statements assuming the

delta in this own; in the constant of the ol notation.
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So, how are we going to achieve this? Prove this following theorem that the running time

is O of n log n with high probability, and we will prove that L i becomes small with high

probability when I becomes off log n ok. So, as the as you recurs further and further after

the ith roughly the ith I mean i equal to O of log n at recursion, what happens is the size

of the array becomes a constant ok. And once it becomes a constant then this algorithm is

only going to the remaining running time is only going to be a constant. So, we do not

care. So, if if we were able to show this, then the running time is essentially limited by

this summation i equal to 0 to some theta of log in, and sum up all the individual Lis and

of course, there might be a scaling factor r coming, but that is only a constant ok. and so,

now, if if you if if if this is what we care about the easier thing to and notice that if after

the log nth iteration if L i becomes small, we can simply stop with summing over the first

log n L i values ok.

And so, then that this can be upper bounded by this quantity. So, here essentially what

we are doing is we are replacing L i by a very gross upper bound n ok. So, so clearly the

running time is upper bounded by the summation of i from 0 to log and theta of log in

times of n and that is not hard to see that its o of n log n. So, now, what remains to be

shown is this that the probability of L i greater than or equal to 1 is at most 1 over n

when i is some data of log n.
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So recall that we have already shown something about L i, Lis we have already seen that

L i is at most 7 over 8 raised to the power i times n, and we can write that as essentially

take  the  7  over  8  raised  to  the  i  to  the  denominator.  Now it  will  have  to  take  the

reciprocal. So, it becomes 8 over 7 raised to the power i ok.

And now, let us remember we are interested in the case where i is some data of login. So,

what we do is set i to be some c times log to the base 8 over 7 of and c is some constant.

So, let us see how this plays out. So, now, when you plug this value of i into this term

you get this expectation of lie now becomes at most 1 over 8 over 7 raised to the power c

log to the base 8 over 7 and ok. But what is this quantity actually actually what is this

quantity 8 over 7 raised to the power log base 8 to the 7 and that is nothing, but n and

there is the c. So, this c will turn out to be n c. So, this whole inequality becomes at most

1 over n to the c times the n which is n to the one minus c. So, what have we shown? We

have shown that the expected value of a L i is at most n to the 1 minus c when I takes on

this value. So, that is pretty small.

So, for example, when c is 2, this will become n to the minus 1 and that is a very small

fraction, but that is not exactly what we want, we want to show that the probability that L

i is greater than 1 is at most some 1 over we want to show something like that ok.
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So, we need a new tool for this and this is where Markov’s equality shows up. We have

been able to bring the expectation of L i  down to something very small  we have to

exploit  them ok. So, Markov’s inequality states the following let x be a non-negative

random variable ok, then consider any value a and ask what is the probability that x is

greater than or equal to a, and that is upper bounded by the expectation of x divided by a.

So, a lot of times a picture would help understand what we are talking about. So, here is

the distribution of x it  can be a complicated distribution,  but we want X to be non-

negative that is an important requirement.

And so, let us assume that the expectation lies around here, were going to what we are

asking is what is the probability that X is greater than or equal to a and that is the shaded

portion over here the area under this in this shaded of the shaded portion and what does

this inequality say that? That is that is at most the expectation of X divided by a. And you

immediately notice that this inequality only makes sense as long as a at most expectation

of X. If a is smaller than the expectation of X, then this inequality the right hand side will

become greater than 1 and that is useless because we know that probabilities are always

bounded by 1. 

So, that is not very meaningful him and in general this Markov’s equality tends to be

very weak, but it is still fundamental because its power shows up when the expectation

becomes small, then you will be able to get a very good upper bound its small upper

bound on this probability. Remember this is typically going to be the probability of some

bad event and so, you want this right hand side this is this is the bad region. So, you want



do not you for example, you do not want your running time to be too large that is the bad

situation and you would not argue that the probability of that bad situation is very very

small ok.

So, you are most often you are interested in ensuring that this right hand side is as small

as possible, and that particularly comes out I mean in the context of Markov’s inequality,

it is only useful as long as the expectation is sufficiently small ok.

(Refer Slide Time: 18:33)

So, let us quickly prove this inequality, let us define a variable i and indicate a variable I

that  is  1  whenever  X  is  greater  than  or  equal  to  a  and  0  otherwise  ok.  And  this

immediately tells us that I is at most x over a because if x is greater than a greater than or

equal to a then I is 1 and the right hand side will be larger. If when X is when X is less

than a, then I will jump to 0 and the right hand side will still be a fraction remember X

always is greater than or equal to 0 that is a requirement for this Markov’s inequality ok.

So, now let us look at the expectation of X I and that is nothing, but the probability

because  this  is  a  0  1  random  variable  this  is  going  to  work  out  to  just  being  the

probability that I equal to 1. Why because this is if you work it out its going to be the

probability that I equal to 1 times one plus the probability that I equal to 0 times 0. So,

this term just will vanish away and so, that is why we are simply writing it as probability

that I equal to one and that probability is nothing, but the probability that x is greater

than or equal to a ok.



So, which remember is exactly what we are interested in ok. So, this probability that X is

greater than or equal to a is nothing, but expectation of I these are all equalities I am just

using that  which is  at  most now what  is  I?  I  is  nothing,  but  X over a.  So,  at  most

expectation of X over a and by linearity of expectation its nothing, but expectation of X

divided by a and that is exactly what we want ok. So, now, we we have a handle on

Markov’s inequalities and she says that the probability that X is greater than or equal to

some a is at most the expectation of X divided by a ok. So, remember this now were

going to go back to the selection problem ok.
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So, what do we know in the selection problem, when I is some c times log n we get this

the  expectation  of  L i  is  at  most  n  to  the  1  minus  c  ok.  And  remember  now  this

expectation is sufficiently small when I is small. So, now, we need to what we are trying

to show is something like this probability that L i is greater than or equal to 1 is at most 1

over n, this is the form that we want and. So, to get this form we have to apply Markov’s

inequality, the nice thing is L i is non-negative it is a running time or the size of the array.

So, its non-negative. So, we can apply Markov’s equality ok.

So, we ask what is a probability that L i is greater than n n to the 2 minus c that is

nothing,  but  the  expectation  of  X  divided  by  n  to  the  2  minus  c  just  by  applying

Markov’s inequality ok. And we know that the expectation of x in the well is actually this

axis should be a L i and what is the expectation of L i that is nothing, but n to the 1 minus



c divided by n to the 2 minus c which turns out to be 1 over n ok. So, now, if if you set c

equal to 2 or anything larger than 2, then essentially like it specifically if you set c equal

to 2 you will get property that L i equal to 1 is at most 1 over n and of course, if you

increase the value of c then you you only generalize and so, this is exactly what we want.

And that with that we complete the proof of this theorem that the running time of this

randomized selection algorithm is at most o of n log n with high probability what we

have shown here in this slide is this that the probability that L i is greater than or equal to

1 is at most 1 over n and you have to then consider. So, what we have just to recall how

this  proof  completes,  you have  to  remember  that  given that  the  probability  that  L i

greater than or equal to 1 is at most 1 over n we can then plug in the fact that these Lis

are at most I mean if it is not even going to be greater than 1 with you know then clearly

you can upper bound it by n, and summation of these ends over the log n iterations is

going to be O of n log n and this is going to be true with high probability ok.

(Refer Slide Time: 24:21)

So, now were going to ask somewhat intriguing questions. So, what we have shown so

far is that the probability of the running time being greater than or equal to some delta

times  n  log  n  is  at  most  1  over  n.  Essentially  saying  that  it  does  not  I  mean  the

probability that it goes too large and in that in that sense too large here is defined as n log

n is that most 1 over n. But we also know that the expectation of the running time is at



most some O of n ok. So, this is a gap expectation is O of n and, but we have only been

able to show that the running time with high probability stays with an n log n ok.

So, the natural question is can we say something with or not even high probability, but

some probability tending towards 1 for this event that T belongs to O of n what can we

say about the probability that, T is some O of n say what is the probability that T is, at

most  50 times n,  where 50 is  a  constant  right  and can we argue somehow that  that

probability will be 1 minus some little O of n. Little O of n can be something like 1 over

log n or 1 over square root of n or something like that, what it cannot be is a constant

little O of n is something sub constant and were asking whether that is ah. So, basically

this is a probability that tends to 1 as n increases is that possible as it turns out the answer

is no. So, this you have to live with this divide between the expected running time and

the bound that we have on the running time with high probability there will have to be a

separation ok.

(Refer Slide Time: 26:43)

So, what we are going to show is that, the bad event that the running time belongs to

some omega of n is going to be at least a constant for this to hold this is the bad event

should be should have been little o of 1, but that is that is not going to happen because it

is we are going to show that that is going to be omega of 1 ok. So, that is what we are

going to show now, and we are going to show that in a in a carefully constructed manner

ok. So, the bad event this we are going to specify what we mean by T belongs to big



omega of n, this the bad event is going to we are going to consider the bad event specific

bad event as T to be greater than some constant c times n divided by 2 and c is c can be

any constant ok.

So, now we ask what is the probability that, T is greater than or equal to c n by 2 and we

are going to argue that that probability is going to at least be some constant remember c

is a constant.  So, any function of a constant,  this should be a constant this will  be a

constant  right  we would  not  argue  that  this  probability  is  going  to  be  more  than  a

constant, which is which is exactly what we mean by omega of 1 how do we make this

argument?

Let us assume let us look at the algorithm the execution of this randomized selection

algorithm, but we are going to view it from the point of view that the items are sorted.

So, in reality the items will not be sorted, but we are just going to for the sake of analysis

observe what happens in this sorted order ok. So, this is the sorted order, but we are

going to break the sorted order at least the first half of the sorted order into little pieces

and these little pieces there are going to be c such intervals and each such interval is

going to consist of n over 2 c items ok. Basically this is n over 2 and that n over 2

divided into c pieces is n over 2 c items each and in this case we are going to assume that

k equal to n over 2. So, were basically trying to find the median element ok.

So, what could go wrong in this sort of view? Well remember and each recursive call we

are going to pick a random element. So, what is the probability that the very first random

element is going to be in this very first interval ok? Well the width of that interval is

going to be n over 2 c and the overall and then this. So, you your random favourite

element is going to be in that interval with probability n over 2 c divided by the total size

of the array ok, that is the current size and what about the next iteration?

So, let us say that the first recursive call you pick a pivot in that region ok. In the second

recursive call what is the probability that you would pick a pivot? In the second interval

that is again going to be n over 2 c, but now the size might have been smaller because

you your erase is reduced a little bit, but its only reduced by a little bit because you will

probably eliminated the first interval. So, that is ah. So, I am just not going to worry

about exact size, but I am just going to call it the current size and so on and so forth.



In each recursive call the bad thing that, could happen is that the pivot gets chosen from

this tiny sliver of items at the far left and that those bad events can happen with these

probabilities  n  over  2  c  divided  by the  whatever  the  current  size  is  and  I  am only

interested in a lower bound for this probability. So, I can make I can I can replace this by

a smaller quantity. So, what do I do? I look at this denominator it is the current size. And

if I  replace it  by a larger quantity  I certainly will  know that this  will  be larger than

whatever I get over here. 

So, that being the case I am going to replace the denominator by n, because n is the full

size of the original array and the current size could only have been smaller ok. So, I get

and now I the n cancels out and I get 2 c raised to the power minus c which is a constant.

So, what is the final outcome of this argument? We have been able to show that the

probability of the bad event that the running time is greater than c n by 2 is at least a

constant. So, this means that there you will not be able to prove any high probability

result for a running time of O of n that is that is that clearly a separation between the

expected time analysis, and the running time analysis with high probability.

So,  you may  wonder  at  this  point  and especially  those  of  you who have  studied  a

selection problem in an undergraduate algorithms course, you may you may recall that

there exists a deterministic of n time algorithm and why not something better as it turns

out  little  while  later,  we  are  actually  going  to  see  an  improved  algorithm which  is

actually going to run in O of n time with high probability, that is going to be a different

algorithm. But this randomized selection algorithm that kind of resembles quick sort is

unfortunately going to have this sort of a chasm between expected time analysis and high

probability analysis ok.
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So, now let us see this whole randomized selection allowed us to explore this notion of

Markov’s inequality, we were able to exploit that to get a bound on the running time. Let

us use the Markov inequality to bound a binomial random variable ok. So, it will help us

get a sense of what it is useful for and how to use it ok.

(Refer Slide Time: 34:51)

So,  now, let  us  let  us  assume  that  X  is  drawn from the  binomial  random variable

binomial distribution with parameters and meaning n coins are tossed and the p values

are half, which means that the coins are all unbiased ok. So, the question we ask in this

sort of tail bound analysis is how much does X deviate from its expectation ok. So, what

range of values of X have significant probabilities?



So, here is an experiment that I quickly coded up, I am going to set n equal to 10,000 and

I am going to draw X repeatedly 1000 times. And I am going to ask how much does it

deviate from the expectation remember expectation here should be n over 2 right. So, in

this context when n is 10,000 the expectation of X should be 5000 right. So, the question

is; how much does it deviate from this 5000 and you may want to pause here to ask what

what will that deviation be. 

You know can we say most of the time it is going to be within say 2500 to 7500 or is it

going your are you going to be able to see a wider range of numbers. So, for example,

remember were repeating it then I mean 1000 times. So, how many times is going to be

less you know less than 2000, this x how many times is going to be greater than 9000

these are all you know the type of questions that these tail bounds try to ask and so, you

may want to pause a little bit to try and answer that question intuitively, just think about

it and after you have passed and you have had some thought let us come back to this ok.

Now having thought about it will show you a picture might surprise you ok.
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So, here I am plotting on the x axis its expectation of X minus X. So, this is the 0 here

actually refers to the 5000 mark and so, this for example, 120 refers to the 5000 minus

120. So, that is like 4880th mark this refers to 5000 plus 140. So, that is going to be 5140

as a thumbs are out of these 10,000 repetitions most of the time you are within a plus or



minus 120 130 ok. So, we never went below 4850 we never went above 5150. So, clearly

we never would have touched 2500 or 7500 ok.

So, this binomial distribution when you think about, it is actually going to be very tightly

bound around its expectation and this is this is an important intuition that you need to

develop  ok.  So,  even  though  its  random it  is  highly  predictable.  Now let  us  see  if

Markov’s inequality is really any good like how good is its prediction is it able to tell that

this random variable X drawn from the binomial distribution is going to be close to the

expectation or not let us let us see where it says.

(Refer Slide Time: 39:10)

Let us ask; what is the probability that X is greater than the expectation 5000 plus 160

that is going to be the expectation which is 5000 divided by 5160 that is 0.96 and what

do you think about it out of the 1000 reps that we did for this experiment, none of them

exceeded  5160.  So,  the  probability  should  be  much  closer  to  0,  but  were  getting  a

probability of 0.96 ok. So, this is clearly telling you that Marcos is very very weak in this

context at least it is not always weak its sometimes it is really the best starting point that

you can have for these tail bound analysis, but in this context its weak ok. So, we need

slightly more nuanced tail bounds to analyse the binomial distribution ok, and that is

what we will be developing in the rest of this module.
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So, to conclude in addition to the expected running time, we also typically want high

probability guarantees on the running time. So, we want to be able to say that the running

time does not exceed some quantity with high probability or that it exceeds the this value

with very small probability, both equivalent ways of saying things and we have looked at

the first fundamental step towards these sort of tail bounds and Markov’s inequality, and

we have noticed that when the expectation can be brought low then Marcoss is quite

good, but not so, good otherwise. So, it did not; was not very good for the binomial

distribution, where the expectation was already high like 500 5000 or something.

So, the trick is to really exploit this feature of Markov’s inequality. So, whatever random

variable we want instead of bounding that random variable directly, if its expectation is

high we want to be able to recast that. So, that were looking at a random variable with

low probability and then apply Markov inequality and thereby good get tight bounce ok.
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So, with that we conclude the first segment in the next segment we will look at a slightly

tighter inequality call Chebyshev inequality.


