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Let us get started.  We are in  5th segment  of module 2 where we will  talking about

random variables,  and in  particular  view we talked about  the expectation  of  random

variable and the conditional expectation.

Today  I  mean  this  segment  on  the  next  segment  we  are  going  to  talk  about  some

algorithmic ideas, so let us hopefully going to change um. So, we are going to talking

about  geometric  random  variables  and  then  will  apply  them  to  understanding  this

problem call coupon collectors problems that is that is going to be the topic for today.

(Refer Slide Time: 00:47)

And of course, we have already seen with geometric random variables. So, that sense we

will just revisited and we will understand one important property of this random variable

called the memoryless property and then we will work out the expectation understand the

coupon collectors problem and analyze its expected time ok.



(Refer Slide Time: 01:15)

So, let us revisit the definition of the geometric random variable. So, this the best way to

illustrate this is it is the number of flips of a coin with some bias p until you get the first

heads ok. So, this geometric random variable comes with the parameter p and that shows

up in this definition this intuitive definition. 

For formally if you have a geometric random variable X it has support of 1 2 3 and so on

all the integer starting from one when I say support what does; that means, is these are

the values for which the probability is non-zero. So, for i equal to value ranging from one

onwards what is the probability that the random variable X takes the value i; that means,

the previous i minus 1 flips must been heads and that is why you have 1 minus p this is

the probability that you get tails raise to the power i minus 1 followed by the probability

that you get a heads.

So, this is the formal definition of the geometric  random variable.  So, if it  is proper

distribution  you need to  have  this  property  that  the  probability  of  the  sample  space

should equal 1 ok, and thus if  we can verify that and so that you can verify just by

summing over all possible elements in the sample space probability that X takes that

value corresponding to that i. 

And so now, we apply the definition which we already seen before then notice that you

can this is bah essentially let us see what this is over here its basically the sum of a



geometric series if you apply that formula you end up getting know. So, that fits our

requirement that the probability of the sample space must be a 1.

(Refer Slide Time: 03:18)

Then  comes  the  very  important  property  memoryless  property.  This  is  very  crucial

property it is a sometimes can be little unintuitive and what this means is that let us say

the let us let us go back to the tossing of coins way of looking at this distribution. If you

toss the coin of few times and you been repeatedly getting tails, then let us say you have

done this for 5 times in repeatedly got the 5 tails.

And let say then that is history have any bearing on how many more coin tosses you will

need before you get the heads and as you turns out you history will not have any bearing

care because these are independent coin flips and that is the intuition of this memoryless

property is capturing. The previous coin tosses if you are unlucky enough you gotten

tails will not somehow influence you to get a heads quickly ok.

And this is some something that goes counter to a lot of our thinking because you know,

people talk about things like you know oh I had the you know I had the good things

happen  to  me  and  now  worried  about  something  bad  happening  or  if  bad  things

happening to me I thought to be getting a good thing you know sometime soon, yeah.

You know if this out of memorylessness property shows up in life as well then that will

not be the case. I do not know whether it shows up in life or not, but in this distribution it

is completely memoryless case ok.



So, let us formally see why that is the case. So, how do we express that formally. So, we

are asking what is the probability of X equal to some i plus k given that X is greater than

k what does that mean. So, for the first k coin tosses your head tails you will be observed

that given that you know that X therefore, has to be some value greater than k ok. So,

what is this conditional probability on the left hand side? Now, the right hand side look

there has no k is completely eliminated. So, the fact that you seen k is coin tosses is

completely eliminated on the right hand side this is the probability that X equal to i.

So, let us see why this is true in a formal way umm. So, the left hand side we take it and

we just apply the formula for conditional probability and then so on the in the numerator

is what do we have is the probability that X equal to i plus k intersected with the event

that X is greater than k ok. So, if X is equal to i plus k and i and k are both positive

quantities it is clearly what you have on the numerator is basically just what happens you

have to get i plus k minus 1 tails followed by the heads and X has to be greater than k ok.

And in the denominator we have a prox; so that is the numerator in the denominator let

us see little bit careful. So, what you are saying is the probability that X is greater than k.

So, if X is greater than k it can take the value k plus 1, k plus 2 and so on and you have

to sum it over all those possibilities and so we run it through a summation starting from j

equal to k to infinity. So, over the first j coin tosses have to be tails followed by a heads.

Of course, you have to p’s in the one in the numerator and one in the denominator. So,

they will cancel out.

And  one  thing  I  would  like  you  to  work  it  out  on  your  own  is  basically  the  this

summation if you work through it is going to end up being 1 minus p raise to the k

divided by p. So, it will come out this way in this derivation. So, when you work it out it

is going to be. So, what happens over here 1 minus p raise to the k will cancel out with

this k over here. So, you will get 1 minus p raise to the i minus one times this p which is

nothing, but the probability that X equal to i. So, this is formally verifying our intuition

of the memoryless property.



(Refer Slide Time: 07:43)

So,  now  let  us  look  at  the  geometric  random  variable  and  let  us  ask  what  is  the

expectation of the geometric random variable. We want to be we want to claim that its 1

over p and this should make into two decision. So, now, let us say that this geometric

random variable the coin has bias very small bias; that means, it is going to take more

coin tosses to get the first head.

So, say bias is one-tenth ok. So, roughly only at tenth of the coin tosses you are going to

see is heads. So, you will have to toss roughly ten times before you see the first head and

that is intuitive statement and so when we try to formalize that we will be able to we will

state  that has expectation of X equal to 1 over p.  So,  let  us see why that  is exactly

correct. So, when you think of let us focus on the first coin flip. The first coin flip can

either be a tails or a heads. So, let us say that define another random variable Y it is as

bernoulli random variable. So, just X is equal to 0 if the first flip is tails and one is the

first flip is a heads and so now, the expectation of X you can write it in this form in this

fashion.

So, now let us say there are two possibilities, either the first flip is the tails or the first

flip is a heads, and this might be will a little bit easier. So, when the first flip is a is a

basically let us actually look at this line, depending on whether you get tails or heads the

expectation  becomes conditional  on that.  So,  the expectation  of  X conditioned on Y

equal to 0 here, Y equal to 1 here. Let us actually see how that plays out.



Now, we will be easier to see this part. When Y equal to 1 what is that mean? It just

means of the very first coin flip was a heads and this probability itself is p and this then

this conditional expectation becomes a 1 because in very first flip you got a heads ok. In

this part the probability is 1 minus p, but what about the conditional expectation. Well,

when you say Y equal to 0 it means the first flip failed you cannot have a value of X

equal to 1 for this in this case. So, we can condition instead of conditioning on Y we can

condition on X mean greater than 1, because Y X equal to 1 is out of the question now.

So, now what is this expectation of X given X greater than 1? When you think about it

now we are applying the memoryless property, X when its greater than one its what

when it is when its guarantee there is greater than 1 has to be at least one the first flip has

to be a tails, after which entire memory is lost and you are basically it is like starting the

experiment all over again ok. So, this one is counting for the fact of first coin flip was a

tails and it is completely lost you have to restart the experiment. So, then you have to add

this X, so this X given X greater than 1 can be written as just express 1.

Now, we can apply linearity of expectation. So, and I am skipping a step here linearity of

expectation and then multiply with 1 minus p you will get p’s terms and you will get a

few cancellation. So, p and minus p will cancel out and so here what let us actually what

this of (Refer Time: 11:32) bit carefully. So, this E of X will cancel out the this e of X

this p will cancel out the this p and so what you will have is p times E of X equal to 1

which is which will then gives give this form. 

So, this again confirms our intuition that the expectation of geometric random variables 1

over.



(Refer Slide Time: 12:01)

Now, comes this very interesting problem the coupon collectors problem the way to it is

sort of explain this is at least as a fun way to think about it. So, let us say you are buying

some something in the store and each time you buy you get a nice sticker ok.

And let us say there are some n different types of stickers, and you want to in each time

you want to buy this box of chocolates or whatever you will get this sticker and you get a

random sticker out of the n different stickers of the company has made available. And so

you are asking how many time should I buy this box of chocolates before I get at least

one copy of all the n stickers.

So, let us state that formally, you are given a collection of n coupons if you were stickers

coupons whatever you want to call it. And then what you do? You when you buy this box

of chocolates you get one of them ok. So, think of it is sampling a random coupon and

you want to now repeat this process until you gotten all the possible coupons at least

once ok.

So,  maybe the  next  time  you buy you get  this  coupon,  and the  next  time  you buy

unfortunately you get something that you have already seen ok. And next time you get

something new ok, and then you again get unlucky you get something you are already

seen before and finally, you get to see something the last coupon. So, this point you seen

all the 4 different coupons right. So, that is the that is the coupon collectors problem. And

the question is how many times should we buy the box of chocolates before we get to see



all the stickers or another way to stating it is how many iterations of this procedure here

should be executed before we have gotten all the coupons. And this is a simple problem

that shows up in a lot of sampling situation. So, it is important to understand this, this has

been this can be analyzed quite thoroughly, but for now we are going to just focus on

understanding the expected number of iterations ok.

(Refer Slide Time: 14:21)

So, this is the theorem we want to prove. That X be the number of iterations of the

coupon collectors problem. So, the number of times you will sample the expectation of X

is equal to some n times ln of n plus a smaller n term. So, how does this proof go we do

this sort of breaking up of X. So, we break up this X into small x size ok. So, X in

particular X i is the number of iterations after you seen i minus 1 different coupons, but

until you see the ith coupon ok.

So, let us make sure we understand what this means ok.



(Refer Slide Time: 15:09)

So, this is let us say the timeline you are sampling overtime the very first time you buy

something you are going to see something new. So, your X 1 basically is have to seen 0

different coupons until you see the first new coupon. So, that is this X 1 equal to 1 ok.

Very first time we buy something we will get something new. The second time use, so at

this point in time you using one coupon there are n minus 1 coupon that you have not see

ok.

So, now you ask what is how many time should I buy before I see one more new coupon

that is going to be your X 2 ok. So, what is the expectation of X 2? You think about it its

now going to be a geometric random variable, your success, your p what is basically n

minus 1 over n because there are n minus 1 coupons you have not seen before out of a

total of n and if you get any one of them you have seen a new coupon that is your p

value. And what is the expectation of X 2? That is 1 over p. So, that is n over n minus 1.

And similarly X expectation of X 3 if you work it out its going to be n over n minus 2

and so on and so the pattern will  continue on ok. And this  should fit  your intuition

because an early on it is the these quantities are going to be very close to one expectation

of X 2 is going to be closed to one expectation of X 3 is going to be close to 1 and so on

ok. And this  should fit your intuition because early on its  going to easy to find new

coupons ok, but as you start collecting coupons is going to get harder and harder to see



new coupon because every time you buy you are going to find the coupon it is likely that

you are going to find the coupon that you already collected.

And particular if you look at the very last X n is going to an expectation take n time

before you find that coupon because you seen n minus 1 you only have one coupon that

you have not seen out of a total of n. So, your p reduces to 1 over n. So, the expectation

becomes 1 over p which is equal to n ok, and that should fit your intuition.

(Refer Slide Time: 17:48)

So,  now, let  us  know now that  we know the expectations  let  us  plug them into  our

understanding of X. So, clearly the capital X is this is this is just breaking few clearly by

just breaking time into X 1, X 2 and so on up to X n right. So, capital X simply the

summation of these X i’s and we can apply the linearity of expectation and apply the

formula for E of X i and. So, that is going to be summation over i n over n minus i plus

1, and n is commons you get it out and summation i 2 over i.

What is summation i 1 over i? That is nothing, but the nth harmonic number and we have

a formula for  that  it  is  the textbook goes  through the details  of how these formulas

arrived at. But we will skip those details, but essentially nth harmonic number is nothing,

but it is between lon n and lon n plus 1 and so you can write that as lon n plus theta of 1

and with that we get the result; that means, 1, yeah.

Student: (Refer Time: 18:52).



 Ok what is what is the type of.

Student: T of X is theta of (Refer Time: 18:59) yeah. So, the statement (Refer Time:

19:01).

Oh ok, yes, yeah thank you. So, with that we conclude the proof of this theorem.

(Refer Slide Time: 19:19)

And so we can conclude this segment just to remind ourselves we revisited the geometric

random variables shown that the expectation values 1 over p when the parameter is p.

And we looked at the coupon collectors problem, and we show the expected number of

times we need to buy the box of chocolates if you will is n lon n plus some theta n.

Next  segment  we are going to again look at  something interesting  again algorithmic

problem, finding the median over more generally the case selection problem.

Thank you. 


