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Ok.  So,  now, we can  we  start  the  second  segment  in  module  2,  where  we  will  be

continuing our discussion on random variables, and we will be looking at two important

properties of expectation, one is the Linearity of expectation and the other is called the

Jensens inequality ok.

(Refer Slide Time: 00:37)

Linearity of expectation we will study it with the binary will. So, in studying that we will

introduce  this  distribution  called  binomial  distribution,  it  can  a  very  fundamental

distribution shows up heavily in computing. And we will introduce Jensens inequality by

trying to understand what the area of a square random square is.

So, let us start with the linearity of expectation, it is a very useful theorem let me state it.
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So, let us consider two random variables X and Y and they have finite expectations, they

do not need to be finite in the sample space, but their expectations must be finite and a

and b are some arbitrary constants. So, we are interested in what is the expectation.

So, now when you think about it, this itself this a X plus b Y itself is a random variable.

You can take two random variables and you can add them you can apply some functions

on  them  and  outcome  will  again  be  a  random  variable.  Why  because  it  is  just  a

composition of functions, remember X itself is a function, Y itself is a function you can

you compose them and you get this new function on the sample space, it is a function on

the sample space and therefore, it is a it is a random variable ok.

So, this expectation E of a X plus b Y is a random variable. So, you can ask what is the

what is the expectation of this random variable a X plus b Y. And as it turns out you have

you it equals a times E of X the expectation of X, plus b times expectation of Y. So, this

is a most natural thing that you can you would suspect it is value to be and that is exactly

what we get ok. What is surprising is that, later on we will see other quantities other

notion and other ways to understand the random variable for which this would not hold

unless you have other conditions like independence of random variables and things like

that. So, here in this theorem the important thing is there is no restriction, it is any two

random variables X and Y you take expectation of a X plus b Y, you get a times E of X

plus b times E of Y ok.



So, this is the linearity  of expectation and the proof is also quite simple what is the

expectation of a X plus b Y? Now what you have to do is consider all possible values of

X and Y. So, possible values of X is lowercase X, possible values of Y is lowercase Y

and it  is  just  the sum the weighted  sum of  the those values  right.  So,  a  x plus  b y

weighted by the probabilities remember a and b are constants.

So, they do not have probabilities associated with them, but we can take what is the

probability that random variable X takes this little x and the random variable Y takes this

little y and you just sum up over all possible values that x and y can take and we will

play with the summation.
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Now,  what  we  do?  We arrange  it  so  that,  what  happens  over  here  is  we  put  the

summation x first in the summation y first and ah. So, basically what we do here is we

when we take this probabilitic term and multiply it by a x then probabilitic term multiply

it by b y that is the two terms that we get, but then when we write it down, we put the in

the first term we put the x coming first. So, that what the advantage this has is that this x

should be inside over here.

But it can come out of the y we summing over y the x is going to stay common. So, you

can bring it out, and a is going to be common throughout it it is not going to be affected

by the values that x takes all the values at y take. So, a comes out all the way outside the

summation x comes out, but cannot come out of a summation of x, it can come out of the



summation  of  y and then you have the probability  inside because this  probability  is

dependent on y as well. So, you cannot bring it out of this summation.

So, that is the first term that you have over here, and then the second term similarly you

teach the constant b comes out all the way, in the summation you put the y first and then

the x comes. So, the y is able to come out of the in inner summation, but it cannot come

out of the outer summation. So, this is a very straightforward thing to do anything about

it.

Now, what about this quantity? A and you think about it, the x equal to x is one even, and

you are summing that intersected with y equal to y for all possible values of y what does

that remind you of? it is the law of total probability, you the y equal to y is going to

arrange the entire sample space.
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So, what do you get out of this? This is nothing, but the probability that X equal to x and

similarly you get probability that Y equal to y over here ok, but of course, now what is

this quantity? This is nothing, but the definition of the expectation of x ok. So, that is

what you get over here, similarly this is the definition of the expectation of y you get a

times expectation of X plus b times expectation of Y and that ends the proof of this

theorem.



So,  we  will  try  to  now  apply  this  theorem  um.  So,  very  simple  application,  but

nevertheless you know please bear with me, because simplicity means it is important and

this is generally going to be true, when things have a very simple clear explanation; that

means, they will show up again and again and again. So, there; that means, is important

ok.
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So, the binomial distribution simply this. So, you consider n Bernoulli trials each with

bias p we say bias p is the success happens with probability p or you can think of it as

heads occurring with probability p, the number of heads obtained under this experiment

represents  the  binomial  distribution.  So,  you  toss  a  coin  n  times  biased  coin  with

probability p of heads count the number of times the heads appears that is the binomial

distribution. And you should denoted the B n comma p the two parameters that define

this distribution are the number of times it tosses the coin n, and the probability p ok.

And when we think of a random variable x that has this binomial distribution we denoted

as X drawn from B and p that is the notation we use X tilde t B n p ok.

Let us gets a (Refer Time: 07:27) what is the probability that X equal to i? It’s very easy

to see how x what are we asking. So, X can take the values either zero when no heads

appears or n when all the tosses outcome are heads, we pick a particular value I and ask

what is the probability that X can take that value i.
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So, let us focus on a particular situation, where there is a set of locations in particular I

locations where heads we want heads to occur. So, the rest of them tails ok.

So, if you think about it,  each location where we want to tails to occur what we are

expecting what we want is an event with probability 1 minus p to occur because we want

tails to occur over there, and wherever we want each heads to occur we were that will

that event will occur with probability p ok.

So, we just pick some I locations for H, and you put probabilities p probability p for all

of them the remaining ones would be 1 minus p. So, if you if you specify the locations

for  the  heads  the  outcome  has  the  probability  p  raised  to  the  I  and  these  are  all

independent tosses. So, you can multiply the probabilities p raised to the I times 1 minus

p raised to the n minus I for all the re remaining locations ok. This probability works

when you have specified the locations for the heads ok.

But that; obviously, you cannot do you do not know where the heads will occur. So, you

have to  choose you have to  find out  all  the we were to  consider  all  the n choose I

possible ways in which the I heads can occur right.  As n choose I  mutually  disjoint

events if it is mutually disjoint you do not multiply you add them up. So, and there are n

choose I of them. So, you basically n choose I times p raised to the I times 1 minus p

raised to the n minus i. Basically you taken p raised to the I or 1 minus p raise to n minus



I you have added it and choose I times. So, that is where the multiplication comes from

ok. So, this is the property that x equal to i.

Now, let us look at computing the expectation of this random variable.
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. So, by the formula we get this. So, you basically sum over all possible values of I that is

going to be I is the values that X can take. So, it can be 0, when no heads occurs or n. So,

when  all  of  them  are  heads  and  you  sum over  all  i’s,  but  then  weighted  by  their

individual probabilities, and I do not know how to deal with this summation. I am sure

there is some way you can get this to work, but it is a little bit messy ok. So, what saves

the day for us is that we can apply linearity of expectation.
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So, there is a very simple way to compute the expectation of the binomial distribution,

and what we do is we break down the binomial distribution into individual Bernoulli

trials, and then we somehow rebuild using linearity of expectation. So, what we do let us

break it down first. There are n coin tosses we use X I equal to 1 it is a new random

variable that we are defining x. In fact, we will define n such random variables X I will

be equal to 1, if the ith toss is a 1 otherwise X I is 0 ok. And we know e of X I is p. So,

now, we know that the number the total number of heads that we going to get is simply

the summation of X 1 plus X 2 and so on up to X n basically take each one of them if

you get a heads, it accounts towards this capital X otherwise not.

So, it is just a summation. So, clearly you can take expectation on both sides there. So, E

of X is equal to E of X 1 plus X 2 plus and so on up to X n and so, now, well at this point

we do not know what to do with the right hand side, but if you just apply linearity of

expectation immediately you know what to do with it you each one of them E of X 1 is a

p, E of X 2 is a p and E of X n is a p there are n such terms. So, the total expectation is n

times p let us a linearity of expectation for you is very powerful very simple and very

useful for us in the same context of random variables just look at Jensens inequality.

So, let us motivate that by a simple example suppose you consider a random square and

what do I mean by that ah.
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So, the edge length X is chosen uniformly at random from the range 1 to 99. So, let us

say it is an integer value um. So, questions that we can ask, what is the value expected

value of it is area? So, you take X squared and you know what is you ask what is the

expectation of X squared? And one question that should come to mind is E of X squared

the same as E of X the whole square and in this context, we are going to just see how

these two relate to each other.
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So, let us for that let us think noticed this X squared is a convex function. So, let us just

be precise about what we mean by a convex function um. So, here is the definition. So,

this way of defining it as three equivalent statements ah. So, f is convex, and then three

other two statements equivalent statements are defined the notion of convexity is the

following.

Suppose you have. So, we have shown this function f over here right. So, it is just this

curve of shown over here it is convex, if for any two points say x 1 and x 2 that you

choose  you  look  at  some  intermediate  point,  and  that  is  defined  by  this  parameter

lambda. So, we take lambda times x 1 plus 1 minus lambda times x 2 you get a point

somewhere in the middle.

So, that is shown in this blue is that that is the blue expression here lambda x 1 plus 1

minus lambda x 2. And now if you take you apply f for that function that is the left hand

side and the claim is in the for a convex function what happens when you take the f you

get to this point on the function, that is this purple point over here you compare that with

the point ah.

So, now if you think of f of x 1 that is f of x 1 over here, f of x 2 is over here and then

you take the corresponding point parameterize by lambda in the seg between the segment

in the segment connecting f of x 1 to f of x 2. Now the comparison of these two points

gives you a definition of whether the where the curve is convex or not. For convexity

what you need is that this point on the curve should be less than or equal to this interpi

intermediate point by just joining there then those two points f of x 1 and f of x 2 by a

line segment.

So, and that should be true for any choice of x 1 and any choice of lambda ok. And many

of these functions that they all of these x squared x to the 4 and all are going to be

convex functions. Another way to think about it is if you take the second derivative and

if  the  second derivative  is  non-negative  then  again  you can  say  that  the  function  is

convex ok.



(Refer Slide Time: 15:22)

So, what is Jensens inequality say? If f is a convex function then the expectation of f of

X is at least f of the expectation of X ok. So, this is this is a quite fundamental inequality

that you shows up every once in a while and so, let us quickly look at the proof and the

proof we are going to do the simple version where there is a Taylor expansion for this

function the proof holds more generally just to be clear. And you can actually try it out

try proving it more generally there is an exercise in the textbook which gives you a hint

to prove it more generally as well,  but for our purposes we will just quickly prove it

under the assumption that there is a Taylors expansion.

So, another standard notation expectation of X is often denoted as just mu when the

context  is  clear.  So,  I  am just  going  to  use  mu  to  represent  expectation  of  X  and

remember mu is just essentially a scalar value. So, f of x can be written as f of mu plus f

dash of mu times x minus mu plus f second derivative of f applied at mu times x minus

mu squared over two this is this is based on standard Taylor.

Note you take the Taylor series and just capture the first two terms as is, but then the rest

of the terms are captured by this third term over here. The nice thing you have is recall

that the convexity gives you that f the second derivative is always going to be greater

than or equal to 0. So, this third term over here is going to be a positive term or at least

non negative term.



So, what do we do? We simply get rid of the third term and replace the equality by a

inequality.
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So, now, we apply expectation on both sides. So, basically we have f of x is greater than

or equal to f of mu plus and so on we just apply expectation on both sides, on the right

hand side you have expectation over a larger term I mean at  two summation of two

terms, you apply linearity of expectation. So, far we are doing something things that are

quite straightforward.

Now, here what are we doing this f prime of mu is just a scalar value ok. Remember E

times a of x is a times E of X we have already seen that. So, we simply get the scalar

value out over here. So, it is just f prime of mu become a times E of X and E of X minus

E of mu. Expectation of a constant is just a constant itself E of X is anyway just mu and

then there is this f prime of mu and here what are we doing we are taking expectation of f

of mu is again just f of mu because f of mu is just a constant or scalar value ah, but mu is

a is essentially E of X, here you of course, have this mu minus mu. So, this term cancels

out you are left with f of E of X.
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So, this establishes the Jensens inequality ok. Just going back to the example if you apply

this what you will get is well what is E of X? E of X is going to be 50 X ranges from 1 to

99 right. So, like e of x is going to be 50, 50 squared is something some 2500 ah, but E

of X squared if you work it out is going to be a larger quantity. So, that is just an example

where it works out that way.

The important thing to keep in mind is that we are actually what we are doing is, we are

working our way towards understanding of a some other measures. So, for example, this

if you notice that E of X square is larger than E of X the whole squared. The difference

as it turns out is actually an important measure it tells you how much a random variable

tends to deviate from it is from it is mean value from it is expected value ok. So, that

itself is an important measure.
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So, with that we end this segment, where we studied the expected value of a random

variable and just proved something called it and proved the linearity of expectation and

now the Jensens inequality. And so, with that we will  we will  have to get ready for

conditional expectation, which is some more understanding of how expectation works.


