Social Networks
Prof. S. R. S. Iyengar
Department of Computer Science
Indian Institute of Technology, Ropar

Cascading Behavior in Networks
Lecture - 99
Coding the Third Big Idea- Impact of Communities on Cascades

(Refer Slide Time: 00:05)

Effect of community on cascades

(SCREENCAST-3

Now, we are going to talk about the third idea which is very cute which says that if you
have many communities in your network. So, for the sake of simplicity, we will take two
communities and we show that if our cascade starts from one community; then it actually
even if it gets into this entire community, it is difficult for this cascade to get into another

community. So, we will be coding and now we will be looking at this aspect.

(Refer Slide Time: 00:31)

b depy ¥ [WKedlpy X L idealpy X

—linport networkx as nx
import random

hef create first community(G):
- for i in range(0,10):
G.add node(i)

for i in range(0,10):
— for j in range(0,10):
L5y if i<j:

r=random.uniform(0,1)

if r<0.5:

G.add edge(i,])

G=nx.Graph()
create first community(G)
create second community(G)

So, for implementing this, we need a graph which consist of two communities; two dense
communities. So, what will we do? What will we do? We will create an artificial graph
which will be consisting of two communities. How do we create this artificial graph is
we will create a graph having 20 nodes. So, first 10 nodes will be connected to each
other and second 10 nodes means nodes 0 to 9 will be connected to each other and node
10 to 19 will be connected to each other and there will be just one link between these two

communities.

Let us just quickly do it. So, I will just import networkx as nx and I will also need the

random functions. So, a import random as well.

(Refer Slide Time: 01:24)

Let me save this as this file as create community graph dot py ok. So, I import it random
and then what I will do is I create a graph G equals to nx dot graph. After this I create the
first community in this graph. So, I call the function create first community and what
does this function do is, it just creates a random links between the people I will just show
you. So, define, create, first community and we pass the graph here first community G
and what you do here is ok. So, first of all I add 10 nodes in this community and no edge
is. So, for i in range 0 to 10, what do I do is G dot add node i. So, I have added 10 nodes

in this graph, next I want to add some links.

So, how do I add some links? For as we know these are 10 nodes and there are 10 chose
to possible edges between these nodes. So, I will take every edge and I will put every
edge with the probability of 0.5. So, I am doing exactly what happens in an Erdos Renyi
graph, but I am just coding it manually. So, for i in range 0 to 0 so, I will put first iterator
over all of these nodes and then for j in range 0 to 10, I put a second iterator here and
again to avoid duplication and the same number if i is less than j so, that I get every pair

only once.

What do I do? I will want to put an edge here with the probability of 0.5 and I am quite
sure that you know what I am going to do next because we have seen it previously. We
have coded it also previously. If I want to do some event with a particular probability, I

create a random number; random uniform number real number from 0 to 1. So, I will get

a real number from 0 to 1 r equals to random dot uniform random dot uniform 0 to 1 and

then if r is less than 0.5. What I do is G dot add edge form i to j.

So, I have added every possible edge between these 10 nodes with the probability of 0.5.
So, this is my first community. Similarly I will create my second community. Create
second community and I am sure that you know that the code is going to be same except

for the numbering of nodes.

(Refer Slide Time: 04:45)

community_graph.py (=] gedit
R pen + e B
base,_cox X

aie_codepy X

TOF 1 1n range(uy,lt):
for j in range(0,10):
if i<j:
r=random,uniform(0,1)
if r<0.5:
G.add edge(i,j)

def create first community(G):
for 1 in range(11,20):
G.add node(i)
for i in range(11,20):
for j in range(11,20):
if i<j:

€l JeiE]. LiJ-F

f
k

r=random.uniform(0,1)
if r<0.5:
G.add edge(1,])

So, we can just copy paste this code here and what I can do is I know that my nodes are
now going to run from 11 to 20 right. So, from 11 to 20 and here also 11 to 20 and here
also 11 to 20, everything is done. So, 10 nodes I created here in the; similar way 10
nodes, I created here and between these 10 nodes. I will again put an edge with the

probability of 0.5.

(Refer Slide Time: 05:11)

oreate_community_graphpy (-] - gedit

5 Tor 1 1n range(ll,20):
G.add node(i)
for i in range(11,20):
m for j in range(11,20):
K if i<j:
(| r=random.uniform(@,1)

if r<0.5:
G.add edge(i,j)

G=nx.Graph()
create first community(G)
create second community(G)

nx.draw(G)
lplt. show()

So, what am I going to have now in my network, there will be two separate communities
or you can say two components in this graph. So, what currently we have made is a
disconnected graph. I can also actually show you this graph. So, let me show you this

graph nx dot draw G, then we have a plt dot show right and let us run.

(Refer Slide Time: 05:48)

Terminal
yayatigyayathVostro-J5ké: -

: cascade incomplete

: cascade incomplete

: cascade incomplete

: cascade incomplete

: cascade incomplete

: cascade incomplete

: cascade incomplete

: cascade incomplete

6 1 cascade incomplete

: cascade incomplete

8 : cascade incomplete

: cascade incomplete

: cascade incomplete

: cascade incomplete

9 : cascade incomplete

: cascade incomplete

: cascade incomplete

9 : cascade incomplete
ayati@yayati-Vostro-3546:~$ clear]]

It create community graph.

(Refer Slide Time: 05:52)

Terminal B B

yayathgyayatiVostro-154k -

5 yayati@yayati-Vostro-3546:~$ python create_community_graph.py
i Traceback (most recent call last):

File "create_community_graph.py", line 28, in <module>
u create_second_community(G)
™ .NameError: name 'create_second_community' is not defined
= yavati@yayati-Vostro-3546:~$ python create_community_graph.py
”yayati@yayati—Vostro—3546:~$ python create_community_graph.py

yayati@yayati-Vostro-3546:~$ python create community graph.py

yayati@yayati-Vostro-3546:~$ python idea3.
[
7|

I am just create.

(Refer Slide Time: 06:01)

Figure 1

fr Wt e e B

yayati@yayati-Vostro-3546:~$ python create_community_graph.py

Traceback (most recent call last):

. File "create community graph.py", line 28, in <modules
¥

create_second_community(G)

NameError: name 'create_second_commursd s

Figure 1

yayati@yayati-Vostro-3546:~$ python

a=BBYIS3E yeDAZSTHA

We forgot to change the name of function here. So, it is create second community. So,

you can see this graph here right. We have one community here having which is actually

random graph with the 10 nodes and 0.5 probability and one community here.

Now, these are actually components we cannot say these are communities also, but they

are components; we want a connected graph. So, what I am going to put next is I am

going to put just one edge between these two communities. So, that the communities in

my graph are very very well defined; I put only 1 edge.

(Refer Slide Time: 06:42)

~ T ror 1 an range(1L, 26)
for j in range(11,20):
II if i<j
B r=random,uniform(0,1)
if r<0.5:
B G.add edge(i, j)
i al

P|G=nx.Graph()
create first community(G)
create second community(G)
G.add edge(5,15)

#nx.draw(G)
#plt.show()

; nx.write gnl(G,'random graph community.gml')

ython + Tab Widthe d - Ln M, Cel 84 [

So, I what do I do is G dot add edge and I add an edge.
Student: (Refer Time: 06:48).

Let us say from node 5 to 15. So, let us run it. So, you can see here now this is my graph
having two communities. We are going to work with this graph for a third idea, for the
implementation of the third idea. What I will do is, I store this graph nx dot write gml
and I store this graph as let me name it as random graph with community. So, random

graph community dot sorry dot gml right dot gml; I run it.

(Refer Slide Time: 07:41)

attachmenty Desktop

Wiz
D Documents ﬂ "
¥ Downloads Fictures Public
1 busic

B Pictures

Hvidess uis
0 Trash Idealpy
Deviees

[CERE N

18 10 68 volame

Barcaveleme &

B 21068 volume

B computer

Pl ol | Lok

Natwodk
o rowse Network 1

1 Comnect to Server

random _graghgml

Documents Downloads

Templates Videos
random_graph 11 intro
community. g

- | d

Fral Mk o

create_comemunity Ideatpy
Faphpy

base_code.py

So, you can see a graph here random graph community dot gml ok. So, now, we are

ready to see the. So, we have a graph with community and we are ready to see the impact

of cascading on such a network.

(Refer Slide Time: 08:04)

Hame: ideadpy

—_—
id (
C Save bn folder ayayati
al
Places
B O eaert iy
ré IEXEE.
'ﬂ [oesktap i
[Conuments & Dowrloads
c(& Devloads -":‘flf
PR
_) B Pictures A Pchoes
Pl c=terminal Hue an
if c==1: rash i
pl
else: By 4 9
pt Bancavolee o saphn

B computer

Hetwark

nx.draw(G, @wmene

Characker Encoding: | Current Locale (UTF-4] =

plt.show(]

fandom_graph_coemmunity gml

Line Enclieey | UnixjLinus

Saturdday 12 Auwgust 2017

Saturday 24 June 2017
Saturday 24 June

All Fles

Cancel Save

So, I will actually take my code from here and. Take my code from here and let us save it

here. We will do all the changes here. Let us call it idea 3 dot py.

(Refer Slide Time: 08:13)

base codepy X L Mealpy X | idealpy X [creale wily Graphpy X | “Wdeadpy x

Jdef terninate(6,count):

flagl=terminate 1('A',G)
flagZ=terminate 1('B',G)
[j] if flagl==1 or flag2==1 or count>=100:
return 1
2 else:
return @
=

G=nx.read gml('random graph community.gml')
set_all B(G)

listl=[4,1]

set A(G,1istl)

; colors=aet colors(G)

Pythan = Tab Width 8 + A8, cal 1 INS

So, first of all which is the graph we are going to work with this random underscore
graph underscore community one thing and then let us change the payoffs little bit or let

us keep it the say.

(Refer Slide Time: 08:26)

=

base codepy X L Wealpy X [idealpy

*idealpy x

Payoff(A)=a =4
Payoff (B) =b =3
a=10
b=5
for each in G.nodes():
num A= find neigh(each,'A’,G)
num B= find neigh(each,'B',G)
payoff A=a*num A
payoff B=b*num B
if payoff A>=payoff B:
dictl[each]="A"
else:
dict1[each]="B'

Bl & |, L] @i

return dictl

def reset node attributes(G,action dict):
for each in action dict:

Pythan = Tab Widthe 8 + LA 32, cal 13 ING

So, let the payoffs be 10 and 5 and let my starting nodes be 0 and 1.

(Refer Slide Time: 08:36)

flag=terminate(G, count)
if flag==1:
| break

And what I am interested in is looking at how will this cascade going to occur.

(Refer Slide Time: 08:42)

!' base_codeg ideal.py ||:r.\:l;.r:-:eaEq.ur_:|:--.-w|. graphgy x “idealpy %

4 count=count+l

action dict=recalculate options(G)
q reset node attributes(G,action dict)
colors=get colors(G)

ial

@|c=terminate 1('A",G)
if c==1:
print 'cascade complete’
else:

print 'cascade incomplete’

nx.draw(G,node color=colors, node size=800)
Python » Tab Widthc @ - ini Gl i NS

And let me look at this in every step.

(Refer Slide Time: 08:48)

/’
#

ity graphpy X 4 “Wdeadpy x

u:m'bp,r:-:eaﬁa.ur GEEnLy o
count=count+1
action dict=recalculate options(G)
reset node attributes(G,action dict)
colors=get colors(G)

nx.draw(G,node color=colors, node size=800)

c=terminate 1('A',G)
print 'cascade complete’

; print 'cascade incomplete’

Pythan = Tab Widthe 8 + A8 Eal 1 NG

I want to see the graph at every step. So, you can see I will just show you the code. It is

the same code which we have written previously.

(Refer Slide Time: 08:58)

*deadpy (-} gedit

REo- -
5‘ base_o
—_

ase_todegy X dealpy M [idealpy X | creale ity graphgy x L fidealpy X

3 return E}
G:nx.rea|d gnl('random graph community.gml')
set all B(G)
list1=[6,1]
#lset A(G,listl)
colors=get colors(G)

nx.draw(G,node color=colors, node size=860)

Python « Tab width @ Lnés Celd NS

So, here we load a graph. Here we set all the nodes to have the action B, here we choose

the initial adopters. We set the initial adopters, we draw the graph.

(Refer Slide Time: 09:09)

“dealpy [+) - gedit

[flag=terminate(G, count)
if flag==1:
break
count=count+1
action dict=recalculate options(G)

reset node attributes(G,action dict)

Pythan = Tab Width 8 - AEL,C8lY INS

Next, this is just a while loop in which are process runs again and again. Terminating
condition, as we have discussed before action dictionary we calculate the next snapshot

and then we upload the next snapshot exactly what we want to do.

(Refer Slide Time: 09:25)

Iiadpy [~} - gedit

colors=get colors(G)

nx.draw(G,node color=colors, node size=800)

plt.show()
—
c=terminate 1('A",0)
Wif c=1:
print 'cascade complete’
else:

print 'cascade incomplete'

nx.draw(G,node color=colors, node size=800)

So, we just the code is very very simple, we just have to run this code and see what

happens. So, let us implement it let us execute it python idea 3 dot py ok.

(Refer Slide Time: 09:37)

Figure 1 B EEET

5 yayati@yayati-Vostro-3546:~$ python create_community_graph.py
i Traceback (most recent call last):
File "create_community_graph.py", line 28, in <module>
u create_second_community(G)
NameError: name 'create_second commups
= yayati@yayati-Vostro-3546:~$ python
yayati@yayati-Vostro-3546:~$ python
yayati@yayati-Vostro-3546:~$ python
yayati@yayati-Vostro-3546:~$ python

P
Figure 1

r

7|

‘
VY

400+ 8@ =0 06HEM yel B5T14
So, this is your initial graph and the nodes 0 and 1 are infected here.

(Refer Slide Time: 09:44)

Figure fr Wt e e B

a yayati@yayati-Vostro-3546:~$ python create_community_graph.py
Traceback (most recent call last):
File "create community graph.py", line 28, in <modules

create_second_community(G)

NameError: name 'create_second_commupiss s
yayati@yayati-Vostro-3546:~$ python
ﬂyayati@yayati-‘Jostro-3546:~$ python
yayati@yayati-Vostro-3546:~5 python

yayati@yayati-Vostro-3546:~$ python
[
J‘

118
LA}

/_‘\ Q0+ :‘i AeOME y-ONSTHA

I have adopted the idea and then you can see that 0 and 1 have adopted back the behavior

B, but these other four nodes in this community have adopted this behavior A.

(Refer Slide Time: 09:56)

Figure 1

a yayati@yayati-Vostro-3546:~$ python create_community_graph.py
i Traceback (most recent call last):
File "create_community_graph.py", line 28, in <modules>
u create_second_community(G)
NameError: name 'create second commups
yayati@yayati-Vostro-3546:~$ python
"yayati@yayati—Vostro—3546:~$ python
yayati@yayati-Vostro-3546:~$ python
yayati@yayati-Vostro-3546:~$ python

|
Figure 1

r

7|

A Q0+ f’ 1=0 1ENDE o0 BT

And then you see more nodes have adopted this behavior A and this one node in this
community have also adopted this behavior A and then you can see that most of the

nodes in this first community where the cascade started have adopted the behavior A.

(Refer Slide Time: 10:12)

Figure {

a yayati@yayati-Vostro-3546:~$ python create_community_graph.py
i Traceback (most recent call last):
File "create_community_graph.py", line 28, in <modules
create_second_community(G)
NameError: name 'create_second_commurs

P
Figure 1

yayati@yayati-Vostro-3546:~5 python
ﬂyayati@yayati—Vostro—3546:~$ python
yayati@yayati-Vostro-3546:~5 python _
yayati@yayati-Vostro-3546:~$ python I\~ ey ?
m o8/ b
yavw
¢« b
o s
o
po0+ =@

And then you see, one community has completely adopted the behavior A while in other
communities still everybody has adopted just the behavior B. And you can keep running

it again and again and you can see that this behavior you not passing on to the other

community. It remains struck to this first community only. We can see that this cascade it

keeps strapped in the first community itself.

So, this graph is not going to change, it will just keep running for hundred iterations like
this and your cascade has actually come to an end. So, if you remember during the
lecture we discussed that there is this, there are three stability conditions: first is
everybody in this network adopts A, second is everybody in this network adopts B and
third is some nodes in this network adopt a while others adopt B. So, you can see that is

the third condition here.

Some nodes in this network have adopted A, other nodes in this network have adopted B
and then we have looked at what should the network look like for the third condition to
happen and that was the presence of communities and that is exactly what is happening
here. Here are two communities one community has adopted one behavior and the

second community has adopted a different behavior.

