
Social Networks
Prof. S. R. S. Iyengar

Prof. Anamika Chhabra
Department of Computer Science

Indian Institute of Technology, Ropar
Link Analysis

Lecture - 82
Implementing Page Rank Using Points Distribution Method – 3

(Refer Slide Time: 00:07)

In the previous video, we saw the conversions taking place when it comes to the points

that the nodes are able gather in every iteration. So, we saw that the points are

converging. Now, the next step is how we can rank the nodes based on the points that

they have gathered. Now, let us create a function to sort the nodes based on points. So,

let me create get nodes sorted by points, I am going to pass the points list and it should

return me the list of nodes. I am sorry I am sorry ok.

So, I will write nodes sorted by points is equal to get nodes ordered points which is a

function which I am going to create. And, then let me print the nodes that we will be

getting. So, we will just be printing the nodes that we are getting, I should print the initial

points as well. So, that we know how the points are changing. So, I am printing the initial

points here ok, getting back to the function that you have to create get nodes sorted by

points. Let us create this function here. Sorry ok.

(Refer Slide Time: 01:27)

Now, what should this function do? This function has as an input a list which is points

which is a list having the points for every node. And, what should this function do? This

function should return a list of the nodes sorted by their points. Now, what are the nodes?

How are the nodes labeled? The nodes are basically from as you can see here from 0 to 9

right; that is how the nodes are numbered.

So, we can just simply get the index of the nodes from this points list. So, basically what

we have to do is, we have to sort the index of the values which are there in the points

right. We can use again several methods for that, one method which might be very quick

is we can make use of the package numpy. So, numpy has function argsort which

basically returns the index, the indices sorted by the values of a list. So, we are going to

use that function argsort that function is there in numpy.

(Refer Slide Time: 02:49)

So, let me import that package. So, I will write import numpy as np ok. So, the input to

wherever we yeah here so, the input to that function is basically an array which is a

numpy array and here as an input we have a points which is a list. So, we have to convert

that list into an numpy array. Now, how we do that? So, I will write points array is equal

to np numpy dot array. So, so this array is the function which converts a list into an

numpy array ok. Now, points array is a numpy array and we can apply the function

argsort on it. And, what is that function do?

It returns the indices sorted by the values of the list. So, write np numpy dot argsort

points array ok. What is it return? It returns the indices. So, indices basically are the

nodes in our case. So, maybe I can write nodes sorted by points equal to this thing ok.

Now, one thing that has to be noted is by default argsort sorts in the ascending order

right. And, which order do you want? We want descending order that is the node which

has high points should be the first to be ranked ok; so, simple thing that we can do here

just put a minus here.

By putting a minus all the values are convert converted to negative and the ordering that

we will be getting will be negative. So, as simple as that we can we can work with that

simple method. So, this nodes nodes sorted by points is going to have the nodes sorted

by of course, the points in descending order right. So, the first value will be the node

which is having highest ranking and hence the highest page rank ok. Let us return this

nodes sorted by points, this should work.

(Refer Slide Time: 05:07)

So, let us go back to main and let us see is anything pending. So, we had already called

this function and we had already printed the values. So, let us see whether this function

works fine or not ok.

(Refer Slide Time: 05:18)

So, let us call this function, let us let us see how the code works. So, let me execute this

ok. So, these are the initial points I am sorry these are the initial points 100 each, as we

assigned initially. And then we started the iterations, after the first iteration as you can

see the first node which was having 100 points is now having 120 points and second

node the points for second node have reduced and so on. So, that that keeps changing;

this is the scenario after first iteration. I press enter and this is this scenario after second

iteration. So, the points have 150 for the first node, I keep on pressing enter.

(Refer Slide Time: 06:01)

And I keep on seeing the values changing as you can see. So, let us concentrate on the

first node as of now. So, 224 I keep pressing enter because it is keeping on changing it is

2 219.

(Refer Slide Time: 06:14)

And only the decimal values are changing ok.

(Refer Slide Time: 06:20)

Let us let us look at any other node, if the values are changing drastically. So, if the

values are not at all changing we will stop of course, if the values are changing slightly

we can either keep going on and on or we can stop there. So, that that should be enough

and that is what I am mean to say; let us see if any other value is changing. I am giving

on pressing enter and the values are only slightly changing. So, I think I can stop at any

moment, let me press hash here.

(Refer Slide Time: 06:46)

So, our loops stops ok, this function is looking fine. So, I getting the nodes sorted by

points, these are the sorted nodes that we are getting. Basically these are rankings; this is

the ranking of the nodes. So, the node 0 is having the highest page rank node 2 is on the

second number and so on. So, this is the ranking that we obtained. Now, let us see

whether this ranking is correct or not as per the page rank; by third that is there in

networkx. So, let us get back get to the last step which is compare the ranks thus,

obtained the ranks obtained with the inbuilt page rank method.

Now, let me tell you there is an inbuilt function which we can use to compute the page

rank values for the nodes for a given graph. We have ourselves implemented it over here,

there are several other methods as well let me tell you. We have implemented one of the

methods which is using the distribution of the points. We might look at other methods as

well maybe in the subsequent videos; let us check the ranking that we obtained from

page rank. So, the function is nx dot page rank and we will pass the graph here ok.

Let me tell you what it returns, it basically returns a dictionary where the keys are the

nodes and the values are the page ranks of the nodes. So, basically it does not tell the

ranking of the nodes, it tells us the page ranks page rank values of each node. So, we

would have to rank them ourselves. So, how can we do that? Let me sort this dictionary

ok, we cannot sort the dictionary because the dictionary does not contain any sorting

order. So, we can create a list of the tuples from the dictionary as we have been doing in

the previous videos as well.

So, how can we do that? Let us see so, this is going to be a list of the sorted tuples based

on the values. So, the function that we can use is sorted, I write pr dot items and same

old method that we use key is equal to lambda. How can how do we want to sort it? We

want to sort it based on the value which is the second thing in the tuple which is x 1. So,

we will write x colon x 1 and by default it is a ascending right and we want it to be

descending.

So, we will write reverse is equal to True. So, pr sorted is a list of the tuples ok. What we

want? We want the nodes; we want the nodes sorted by the page rank value only. So,

maybe what we can do is, we can only print the first value from each tuple. So, write for

i in pr sorted ok, I am going to only print the first value for every i ok. So, I want all the

values in same line so, I have put a comma here ok. Let us check the working of the

code. So, basically what we have to check is the ranking that we were getting r by r

method and the ranking that we are getting by this method are the same or not.

(Refer Slide Time: 10:20)

Let us check alright. So, these are the initial values 100 each and after first iteration these

are the values that we get. We got 50 points for the first node now, I am pressing enter

and the values are changing ok. So, the values are changing.

(Refer Slide Time: 10:41)

.

Let us the, for first node has 106, only the decimal values are changing. And, let us check

the second one, second one is also slightly changing third, fourth I think all the nodes are

only slightly changing. So, we can stop at this moment or maybe you can go ahead a

little more ok. I am just keeping on pressing enter; it is just changing very slightly. It

might take number of iterations to actually stop. So, maybe we can press hash and stop at

this point.

(Refer Slide Time: 11:15)

This is something that I want to tell you. So, this is the first thing that you can see is the

ranking that we got by our method ok. And, the second row is the values that we got by

the page rank method from networkx. Now, let us compare 9 4 3 5 is correct after that 0

6 1 2 7 8. So, we can we see some changes here.

This is what I wanted to show you, why these changes are coming and how we can

handle that ok. So, can you imagine what can happen if there is a node which has no out

link. So, as we also implemented if a node has no out link, this node does not distribute

its points. So, in every iteration, what happens it keeps on changing; it keeps on getting

points ok. It keeps on getting point from other nodes and it never distributes its own

points. So, what happens is that the point sink happens.

Sink basically all the points are getting accumulated at 1 node or a set of nodes. So, this

example I gave for 1 node, it may also happen that in the graph that we generated there

are a bunch of nodes which are not distributing any points outside. So, basically there is

a link from 1 node to the other and there is a link from second node to the first node, but

there is no link outside. So, these 2 nodes will keep accumulating all the points and that

is how the ranking that we will get will not be accurate.

So, for that we need to take some measures, we have to handle that case. The networkx

function is basically handling those cases whereas; our function is not handling those

cases; that is why we are getting these differences in the ranking. Now, we are going to

handle these cases. Let me tell you it will not happen in all the cases, because in all the

cases your graph might not be having such sinks right. Let us check one more example,

if we are getting the same. So, let us check for the convergence first.

(Refer Slide Time: 13:31)

Again the values are keeping changing ok, now I am pressing enter and it is not goingead

basically the values are not at all changing. So, it is completely stopped, there is no

change now I am keeping on pressing enter. So, we can just press hash, let us see the

ranking that we getting we are getting 5 7 9 8 4 6 0 3 1 2 ok, that is again another thing I

want to show. So, this might be a graph where there is no such problem as I just

explained you there is no sink.

There is no 1 node or a set of nodes which are keeping on accumulating all the points

and they are not distributing that case is not here and that is why we are getting the same

thing here. So, our method is accurate just in case there is no sink there in the graph ok.

Let me just take another case and I am sure there will be some problem here. I actually

want some problem to happen so, that the next video we can cover that because, we are

going to handle such cases.

(Refer Slide Time: 14:28)

I am again pressing the enter and it is not going ahead, it is stopped. So, 8 7 6 2 1 you

pick 2 1 yeah we got the difference nice. So, 2 9 1 and 2 1 9 so, we got a difference right;

let me tell you one more thing sometimes there might be a slight you know variation for

another reason as well. And, that another reason could be that 2 nodes are having exactly

same page rank values right.

So, in that case your method can rank them in a different order and page rank method

from networkx for example, can rank them in a different order. So, that sort of difference

can happen even if your method is completely working fine and taking care of the sink

cases as well. So, that you can just ignore, but as of now we know that our code is not

taking care of the sink cases. So, we need to do that ok. So, let us get back to our code.

(Refer Slide Time: 15:30)

And in the next video we will be handling that case.

