
Social Networks
Prof. S. R. S. Iyengar

Prof. Anamika Chhabra
Department of Computer Science

Indian Institute of Technology, Ropar
Link Analysis

Lecture - 81
Implementing Page Rank Using Points Distribution Method – 2

Let us start with the Implementation of Page Rank Using Points Distribution Method, as

we discussed in the previous video.

(Refer Slide Time: 00:12)

I have pasted to 5 steps from the previous video over here and we will take the steps one

by one. So, let me create a main function here ok. So, let me import networkx first of all.

So, let us take these steps one by one. So, the first step is create or take a directed graph

with n nodes as I told you previously. So, we can use a generator for creating a directed

graph that is some function from network, we can make use of. For example, we have a

function g n r graph which gives us a directed graph. We can use any function or we can

create our own function to create a directed graph as well. In this video we are going to

created at directed graph ourselves.

So, let us see how we can do that. So, as a first step I am just creating an empty directed

graph by using this function G is equal to nx dot DiGraph ok. This graph is empty, but it

is a directed graph. Now, let us add the nodes and then we will add the at the edges. Let

us add some nodes to it. So, I will write G dot add nodes from. So, we will add a list, I

will write i for i in range, let me add some 10 nodes here. We can add more as well, but I

want to show you the conversions, if you took take and a number of nodes it will take

more nodes, it will take more time for convergence; you can always change that. So, I

am taking 10 nodes at this point.

Now, we have added the nodes, we have to now add the edges. So, I am going to use a

technique of course, you can use many different methods to create a graph. The method

that I am going to use here is that I will be randomly adding edges between the nodes,

that is also well known technique to create a random graph which I think we will be

discussing in the next weeks video. But, I will be just briefing out the technique here

because we will be creating this directed graph using that technique.

 So, for that purpose I will be creating a function, let me create a function add edges ok. I

will pass the graph here which has nodes and no edges as of now. So, I will be

probabilistically adding the edges, I will briefly explain you the method as well. I am

passing a probability value of 0.3 here and this function will be written in graph where

the edges have been added.

So, let me create this function here I will create it here so, I will write. So, as a parameter

this function requires the value of p which is a probability value. So, let me tell you what

we are you doing here. So, we are going to take all possible edges that can ever we added

to the graph and we will toss I mean and we will add these edges to the graph after

tossing a coin. By that what I mean is we will take an edge and we will toss a coin, if a

coin turns out to be head we will add that edge and if the coin turns out to be tail we will

not add that edge.

 So, here in this case as you can see that we are passing a probability value p here and the

value of p we have passed as 0.3; you can pass any value here, you can pass any value

between 0 to 1 over here. So, by passing this probability value what we mean is that, you

can assume that the coin is biased by a probability 0.3 which means with the probability

0.3 the coin will turn out to be head. And, with the probability 0.7 the coin will turn out

to be a tail.

So, we will take an edge, we will toss the coin which is biased by this probability value

and if a coin turns out to be head we will add that edge otherwise we will not add that

edge. So, this is the technique that we are going to follow. This is a well known

technique which is used to basically create random graphs. We are using this technique;

you can use any other technique as well.

So, let us see how we can implement this. So, we have to take all possible edges, how

can we do that. I can start loop I can write for i in G dot nodes. So, I got all the nodes

here because, we want the edges I will start another loop here. So, I will write for j in G

dot nodes ok. So, i comma j is we will give us all possible edges, we are now going to

add self edges. So, I am going to check over here whether i is equal to j or not. So, I will

write if i is not equal to j only then go ahead.

 So, we have to implement that coin tossing here now, can you imagine how we can do

that. We are going to take a random value for that we need to random package. So, let me

import that, import random. So, we are going to make use of function random dot

random which gives us a random value between 0 and 1. Let me store that here r is equal

to random dot random.

(Refer Slide Time: 05:56)

Now, we got some value here in r, we will check whether that value r is less than equal to

this p value or not. If that if r is less than equal to p; that means, we got a head and if r is

greater than equal to p ; that means, we got a tail. So, that is that how we are going to

implement that coin tossing part. So, we got this random value, let us check whether r is

less than equal to p; if it is we are going to add that edge. So, I will write G dot add edge,

the edge is going to be i comma j right and the edge part when r is greater than greater

than p, we assume that that is that is a tail.

So, we will not add that edge, we will just continue here. So, this is how we are going to

add the edges. Now, you know that this G is a directed graph. So, the edges that are

going to be added here by using this add edge function are going to be directed edges.

So, after this loop we will we would have added a number of edges, then we can return

this graph. So, this is our add edge function and now we have created this graph G and

we can go ahead.

So, we are done with the first point, let us implement the second one. It says assign 100

points to each node. So, we have to maintain a list points which will be storing the points

for every node and we have to initialise this points list to 100. Let me create a function

although you can directly write it, but I am going to create a function for this.

(Refer Slide Time: 07:35)

So, I will write points is equal to initialize points and I will pass the graph here ok. So,

let me create this function ok. So, this function is just going to create a list points and

that points list will be having 100 points for each node. So, I will write 100 for i in range,

what is going to the size of this list. And, the size of this list is going to be equal to the

number of nodes that are there in the graph although we know that there are 10 nodes as

of now, but we can always change that. So, let me generalized it by writing G dot

number of nodes and then we should return this list points we are done ok. Let us go

here; we have done the second point. So, every node has 100 points right now.

Let us go to third step, third step says keep distributing points until convergence. Now,

how do we distribute points? Let us see how do we do that. For that purpose let me

create a function distribute points. So, I will write define distribute points. So, this is

going to be one iteration and we are going to distribute points in this function. As you

know that after the nodes distribute their points their points change. So, we are going to

need previous points and new points.

 Let us pass the graph here because, we are going to need that and let us pass the points

that are there as of now. As I told you previous points and new points let me create to let

me create two lists here. So, I will write previous points to be the same as points and this

is just for a ease of understanding. Another list I will create new points, this is what we

will be returning. So, this list I am going to initialize to 0 and during the distribution part,

this list will get more points and that is what we will written.

(Refer Slide Time: 09:58)

So, for now I will write 0 for i in range G dot number I have not copied G dot number of

nodes ok. So, this is the initialization of the new points list which will be returned by this

function. Now, how do we distribute? As I told you for every node, we will look at its out

links. So, let me start a loop at these points, I write for i in G dot nodes. Now, i is a node

and we have to distribute its points. How do we distribute? We look at its out links right.

So, let us keep a track of the out links of this node i, the function that we can use from

networkx for this purpose is out edges.

So, I will call that function I will write G dot out edges. Now, this function is there for

directed graphs only, the parameter will be the node. So, we write G dot out edges. What

this function does is, for the node i it will return a list of the edges which are out edges

from this node i. Now after this, this node i has to distribute its points and equal share of

its points to its neighbours right. So, we have the points that this node i has in this list

previous points right. We are going to distribute these points equally amongst its

neighbours.

And the number of neighbours we can get by getting the list and by getting the length of

this list. Now, what happens what will happen if the list is empty, that is the node has no

out link. In that case, the length of this list will be 0. So, it is a good idea to check for that

condition over here. So, let me check if the length of this out is 0 not, because in that

case division by 0 exception might come. So, it is better to check it here.

So, I will write if length of out is equal to 0 which means this node has no out link ok. If

a node has no out link, what should happen? It will not be distributed; it will not be

distributing any of its points right. So, what we write is, new points for i are going to be

plus equal to I will tell you why I have written plus equal to previous points i ok. So, I

have written plus equal to because, this point is going to retain its points it is not going to

give its points to anybody because there is no out link. However, it might have some in

links and through those in links it might be getting more points.

So, that is why we have to keep adding it. So, we have to write plus equal to. Now, this is

what we will do in case a node has no out link. In the general case that is the nodes have

out links, what are we going to do? We are going to distribute an equal share of these

nodes points to its neighbours. Now, what is that share going to be? Let us create a

variable share. Now, the share is going to be the number of points that are going to be

distributed to every neighbour. What is this share going to be? So, as I told you if there

are if there are 3 neighbours, the points the points that are going to be distributed is total

divide by 3 ok.

And what is the number of neighbours here? The number of neighbours is equal to the

length of out here right. So, what are we going to do is we will write previous points that

is what is to be distributed right, you remember that you have to only distribute the

previous points. So, previous points are to be distributed in equal share so, we divide by

length of out this. So, this is what is to be distributed, let me sorry let me do the float

casting here so, that we get the exact values ok.

So, this is a share that has to be distributed to the neighbours. Now, where are the

neighbours? The neighbours are in this list; this list is a list of edges. So, for every edge

0th value is the source that is our node i and first value that is the value at index 1 is

going to be the neighbour ok. So, let us start a loop here in order to distribute the points.

So, I will write for each in out which means for every neighbour, we are going to update

the new points of every neighbours. So, I will write new points for each now each is an

edge.

So, I will write each 1, each 1 is going to be the neighbour. So, new points plus equal to

share so, that is how we will be updating the points of every neighbour. I think we are

done, let us return. What are we going to return? We are going to return the graph G and

we are going to turn the list new points ok. So, we have created this function, this

distributes points which is going to be one iteration where every node will be distributing

its points. Let us go back to main and let us see what we have to do.

(Refer Slide Time: 15:22)

We have to keep distributing the points until the convergence. So, we have to basically

keep calling this function distribute points. So, what we can do is let me create another

function which will keep calling this function that we have just created. Let us call this

function keep distributing points and the parameter will be G and the points that we have

and this function should return G and points again. So, we are passing something and

that is getting updated and that is what we will be returned. Now, what should this

function do? Keep distributing points, this function has to keep calling the function

distribute points until we get the convergence ok. So, let us create this function ok.

(Refer Slide Time: 16:22)

So, as I told you this function has to keep calling this distribute points function, let me

start a while loop here. So, what I can write is while 1, they should keep going on ok.

What should keep going on? Before that let me rename this previous points is equal to

points, this is for the ease of variable name that is all ok. So, we are going to start this

loop, this will keep going on and on. We have to call the function this distribute points.

So, I will copy it and I will call it here, this function returns two things again. So, I will

write G new points is equal to this right. What are we passing? We are passing previous

points. So, let me rename these previous points done. So, we have called this function

and one iteration is happened and we have got the new points in these list new points. If

we want to keep track let us let us print this so, that we can see the updated points ok.

Now, this will keep going on and on, it has to stop somewhere basically when the

convergence happens. So, you can do one thing or you can do one or the two things, you

can either through your code check whether the convergence has happened or not that is

one thing. And, other simple thing that we can do is we can keep observing as we are

printing it right. So, we can keep observing these points and whenever we see that

convergence has happened we can stop it.

So, for that let us let us ask the user to stop it, Enter may be hash to stop and let us ask

the user to enter a hash when he wants it to stop. So, we will take that through the

function may be raw input and if that char is equal to hash we are going to stop. So, I

will write break ok. Now, after one iteration, we have to assign the new points to be the

previous points and we have to repeat the process. So, it is important to write previous

points is equal to new points and after that we will go back here and the same thing will

start alright.

I think we have done, let us return let us return the same two things G and new points. I

think this function should work ok, we can, may be check the code as well if it is

working fine, wait there is an error here ok. So, let us check the functionality of this code

whether it is working fine or not. So, let me call main here ok.

(Refer Slide Time: 19:34)

Let us get back to our screen and let us try calling this file ok. So, these are the points,

we did not print the initial points right. They were obviously, 100 100 each we can print

that as well. So, this is these are the values that we are getting after one iteration.

And we have to press enter after it, after I press enter the next the next iteration starts.

And, as you can see the points are changing the first node was earlier having 33 points

and now it is having 38 points. I am keeping on pressing enter and we are seeing the

points how they are changing.

(Refer Slide Time: 20:12)

So, I keep on pressing the enter ok, as you can see we are sword of reaching the

convergence.

(Refer Slide Time: 20:21)

So, it may stop, it may happen that as you keep pressing enter it will not change at all.

So, nothing will change or it may happen that values are changing by very nominal

decimal points. So, you can stop wherever you want and or you can go on and on. So, it

is up to you. So, I am keeping on pressing enter and I can see the values changing

slightly only by decimal points. So, I can keep going on and on or I can stop.

(Refer Slide Time: 20:53)

So, I want to stop let me press hash and we are stopping. So, these are the points

distribution that we are getting and we are sort of seeing the convergence taking place as

well. Now, let us get back to our code and let us see what is pending ok, next step is to

get the nodes ranking as per the points accumulated. So, we have to basically rank the

nodes based on the points that they have acquired overtime after number of iterations,

after the convergence point.

So, I think we will do that in the next video.

