
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

Homophily (Continued) & Positive and Negative Relationships
Lecture – 72

Forming two coalitions

(Refer Slide Time: 00:05)

In the previous video we moved the network from an unstable state to a stable state,

where there are no unstable triangles. So, once that happens it is possible to divide the

nodes of the network into two groups. So, that is what we are going to do here now.

Let us create a function for that and let the function return to lists, where the first list will

contain the nodes of the first row and second list will contain the nodes of the second

row. So, let us create this function and let us call it see coalitions and let us pass the

graph here.

(Refer Slide Time: 00:53)

So, let us create this function here let us go up and we will create this function. So, what

do we have to do here? As I told you previously the strategy that we are going to follow

as we explained here with me.

(Refer Slide Time: 01:04)

Let me write it here because this is the sixth step the second last step.

So, we are going to choose a random node and we will add it to the first coalition.

(Refer Slide Time: 01:18)

Now, how do we choose a random node? Very simple, we will first access the list of

nodes; nodes is equal to G dot nodes. So, we got a list of nodes now what we have to do

is we have to choose one node randomly out of it. The function that we can use for that is

ran int that we have previously used as well or we can simply use the function random

dot choice which gives us one entry out of a given list. So, we have this list as nodes. So,

we can use any of the functions.

Let us use the function choice r is the random node. So, we will write random dot choice;

the choice should be out of this list nodes. So, we got a random node here now since we

have return also and we have to keep track also let us create two lists for each coalition,

first coalition empty list and similarly second coalition another entry list. So, we are

going to add nodes to this coalition.

Now, as I told you we will we will choose a random node and we will add it to the first

coalition. So, we will write first I am sorry first coalition dot append r right now

basically what we have to do is; we have to run a sort of a (Refer Time: 02:49) first

search on this node we can added condition that all the enemies of this node are not

going to be a part of the bfs tree right.

So, as I told you we will look at the neighbours of this node and some of these

neighbours will be positive some of these neighbours will be its friends and some of its

neighbours will be its enemies. So, the neighbours which are its friends are going to be a

part of the bfs tree, they will be explored further. However, the nodes which are going to

be which are its enemies are not going to be part of the bfs tree they will not be explored

they will simply be put in the second coalition list. So, that is the strategy you can use

any other strategy as well. So, this is one simple method that works well. So, as we do in

bfs also we keep a track of the nodes which have been processed already the nodes

which are yet to be processed. So, we are going in the same fashion.

So, let us create for that purpose two lists processed nodes initialized to empty to be

processed same. So, this list will keep track of all the nodes which are to be processed.

Now since r is the node which has to be processed we will put r into it ok. Now we will

we have to keep running the loop of bfs until this to be processed list becomes empty

right you will write for each in to be processed.

(Refer Slide Time: 04:32)

Now, in case the node is an enemy what has to be done? It has to be added to the second

coalition and it does not have to be processed. So, we will write elif let me copy paste if

its a negative sign, we will add it to second coalition if it is not already there. So, we will

check if neigh I not in second coalition we will add it there. So, we will write second

coalition dot append neigh i that is one thing. Secondly, it does not have to be process.

So, we are going to add it to be processed list, we will write to be processed dot append

neigh i right, ok.

Now, by this time r node that is each which we started with has been completely

processed. So, we will write here, we will write since it does that it has been processed

we will write processed nodes dot append each. So, whatever we just processed, we will

added to this list. So, that we have done.

So, this was the method to divide into first coalition and second coalition now this

function has to return these two lists.

(Refer Slide Time: 05:57)

So, we will make it return here ok. We will write return first coalition second coalition if

the spelling is wrong is it; oh I am sorry second coalition its wrong everywhere I am

sorry where else here ok.

(Refer Slide Time: 06:23)

I think we are done (Refer Time: 06:28).

(Refer Slide Time: 06:28)

We have added the friends of a given node to the first coalition and the enemies of the

given node to the second coalition, and we are not processing the nodes which are going

to go in the second coalition. Here, I am really sorry we do not need to process the nodes

which are which are added to the second coalition. So, they will go to processed nodes

here, because they are not going to be processed again ok.

(Refer Slide Time: 07:00)

So, this is the function and let us go back here and see if it works well. So, we call this

function see coalitions and its returning the two lists of nodes first and second and then

we are printing these two lists.

(Refer Slide Time: 07:15)

Let us see how it functions. So, let us run this, this is the nodes this is the networks with

five countries I am closing it. So, that it can go ahead.

(Refer Slide Time: 07:30)

Let me show you one some more countries.

(Refer Slide Time: 07:34)

So, that we are able to nicely see the division into two groups: let me increase this to 8

and in c.

(Refer Slide Time: 07:44)

So, these are the 8 countries let me close this.

(Refer Slide Time: 07:46)

So, it move the triangle to stable state and then it divided into two groups. As you can see

out of the 8 countries four are in first group and the rest four are in the second group if

we want to visualize as we can see.

(Refer Slide Time: 08:08)

Let me add code of displaying the communities as well the coalitions ok. This is how we

displayed the graph previously; I am just copying the code; so that we can display it once

again.

(Refer Slide Time: 08:21)

So, I am executing it again.

(Refer Slide Time: 08:24)

So, this is the initial network; let us take one example triangle. So, Bearland Jenera and

Bercy they have an unstable relation, see there are two positive relationships. So,

basically Jenera and Bercy are enemies to each other, but they have a common friend

which is Bearland. So, let us see what happens to this. I am closing it and its doing its

thing. And yes this is what we had to see. Bearland Jenera and Bercy they all are friends

now. So, over time what happens? Jenera and Bercy which were initially enemies they

become friends to each other. So, you can you can check more examples as well. So,

overall this network is completely stable.

In the next video we are going to visualize these two groups that get formed.

