
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

Lecture – 52
Fatman Evolutionary Model – Implementing Social Influence

Finally, we have implemented homophily, we have seen how do implement three kinds

of closures scenario evolutionary model and the last and the most interesting thing which

remains is the social influence and it is actually the most easy. We need not do anything

here in this model to achieve social influence, as I have told before.

(Refer Slide Time: 00:20)

So, there is a very subtle way in which we capture these social influence happening; how

do we do that is, assume that if a person is connected to a gym so; obviously, he is being

connected to gym should result in a decrease in his BMI and if a person is connected to

an eat out place, they should result in increase in the BMI of this person.

So, what do we do; for every node which is connected to a gym, we reduce its BMI by 1;

every iteration and every node which is connected to an eat out place, we increase its

BMI by one every iteration and we just do this and the social influences captured; How?

So, as I have told you; we have seen here now, when a person gets connected to a gym;

he is losing weight. Now, I have a friend and this friend is going to the gym; now

because of membership closure, I tend to become a part of the gym and when I become a

part of the gym; as you saw I will start losing weight.

(Refer Slide Time: 01:22)

So, this is one aspect of social influence, so we have mainly looked at three reasons why

in which social influence can happen, but we capture one of those here and that reason is

the sheared context. When 2 people are the part of the same social foci, it leads to an

influence. So, we have seen that it is like; if 2 people both have a brilliant teacher, both

of them will start having good marks. Similarly, if 2 people here both of them are part of

gym; so one person who was going to gym, another also started going to gym will start

losing weight and similarly with an eat out place; the effect is reversed, so this is how we

capture social influence here.

(Refer Slide Time: 02:25)

Finally, what we want to do here is; we want to implement social influence. How we are

implementing social influence? We have already discussed before; well it is an indirect

implementation of social influence. So, it is mainly at every iteration a person who is

associated with gym; lose his weight and a person will associated with an eat out, gains

weight and then as we know that membership closure are happening. So, let us say I am

a part of gym and then I have a friend, who is fat, then he looks at me and I have joined

gym, he also joined gym and hence he started losing weight. So, this the kind of social

influence we are going to implement here.

(Refer Slide Time: 03:18)

So, for meanwhile let us just comment everything and now what we want to do here is;

we want to change weights, we want to change BMI’s of people.

(Refer Slide Time: 03:41)

So, we called change bmi; G and what this function change bmi G does is change bmi G.

So, for each in f nodes; what do we do for each one in G dot neighbors of each; what do

we do, if G dot node each one, but again we are doing it for the foci node which are

either an eat out or a gym. So, we want to see that so for each in f nodes; we again need

to put a node here, if G dot node each. So, if this each node its name; its name equals to

equals to eat out.

If its name equals to eat out only then we are going to insecure this code, so if its eat out

we look at each of its neighbors and if each G dot node each 1 name. So, now since we

are going to increase the weight, first of all this name should not be equals to 40 because

if it is equal to 40, we cannot further increase the bmi of this person. So, if each if G dot

node each one; name is not equals to 40; what do we do is we increase it by 1.

G dot node each 1, name equals to G dot node each 1 name plus 1 and then we again do

this same thing for gym. It is essential we have to copy paste the same code here, if G dot

node each, name equals to gym. So, if it is a gym we look at all of its neighbors and if for

a neighbour this value should not be equals to 15; if this value is not equals to 15; we

decrease its bmi by 1, so this is how we are going to change the bmi of people.

Now, what are we are going to do is; we have all three components in our network. We

have homophily, we have closure and we have social influence. We are going to put all

of these three together and we are going to visualize our network. So, let us take time for

t in range; let us do it over a time period of; let us do it for 10 time instants. So, for t in

range 0 to 10; what are we going to do is, we do homophily we apply (Refer Time:

07:00) closure, we apply social influence and then we visualize this graph and add the

beginning when nothing is done that time also we want to visualize our graph. So, we

have the statements here; now let us execute our code and see what is happening.

(Refer Slide Time: 07:16)

Change bmi G; so, this is a function definition; so, we need a define here; go back and

secure it. So, this is our initial network where we have five social focis and we have

different nodes; I mean different BMI’s.

(Refer Slide Time: 07:31)

Now, we see here that some nodes have become friends with each other and there are

more number of edges between these nodes and let us look at the number of obese

people in this network, so currently we have one obese node which is 40.

(Refer Slide Time: 08:00)

We again have one obese node; which is 40 and is more and more number of nodes are

getting added; Do you see some problem in this code? I see some problem in this code.

(Refer Slide Time: 08:10)

So, as we can see the number of obese people is now changing in this network that

should actually happen because we have implemented social influence. So, what can be

the problem with this code, so let us try to troubleshoot it together when we write a piece

of code we should be able to troubleshoot this code nicely? So, you will see here when

we were visualizing a graph G here; we have passed these various arrays here; color

array, node size, label dict. So, here when we have here when the BMI of people have

changed and then the social influence have occurred. Do not you think we need to again

calculate all of these values?

So, it is like in the beginning we saw which nodes were yellow, we faded it here and we

visualize we fed it here and we visualized it and now when we are running this graph; we

are again and again using the same color array, the same size array; so, we need to

change this. So, best way to change is to have these values; took all these functions

inside our visualize.

So, this functions like let us say label dict function and then the node size function and

the color array function. So, all of these three things needs to be actually calculated in the

visualize function because whenever you visualize it, these values are keeping, these

value that changing. So, what we do is we just delete these values from here and we put

all these values inside all these function calls; inside a visualize function. So, here is our

function visualize; so, what we do here is we have all these values here.

(Refer Slide Time: 10:04)

So, whenever we want to visualize a graph; we again look at the labels, we again look at

the size of nodes and we again look at the colors and then we do not need to have all

these things here, we just have a define visualize G and when we call these function

towards the end, there also we just need a visualize G. So, whenever you will try to code

sometimes when weird things will happen. So, the best ways to keep printing your

different parameters at different places and see what is going wrong where.

(Refer Slide Time: 10:32)

Now, let us again execute it.

(Refer Slide Time: 10:21)

Line 21; there seems to be a problem, so let us go to the line 21, so we have calculated

label dict here, we have calculated node size here. So, instead of n size here; it should

node size and then node under scroll color is; color under scroll array node color. Now,

let us look at this graph, so this is our initial graph and then you see some 2 friendships

have been added to this graph.

(Refer Slide Time: 11:56)

So, now you see there is one yellow node and there is another yellow node, so you see

that the bmi of one node has been increased and it is hit the obesity parameter. So, this

how a graph will keep changing; to have a battle visualization, we can actually change

the parameters, we have used in the code; which you will see that with time more and

more number of people will keep becoming obese because of social influence and yes

people will use their weights also because of this.

So let us quickly have a look on the parameter, so, this was for homophily and then this

is for closure. So, let us keep it small for the time being; let us keep it 0.01 and then we

can again visualize this graph.

Now, let us visualize this graph in a very nice way, so what we are going to do for this

visualization is we store this graph in a file jpg file and when we run this code at jpg file,

we will keep changing with time and we observe that change in that jpg file. So, for that

what do we do is; when you call this function visualize G, this function will store your

graph; will save your graph as a jpg file; instead of plotting it here.

(Refer Slide Time: 13:19)

Now, first of all let us put a sleep statement here so that before making your file, the code

sleeps for some time.

(Refer Slide Time: 13:39)

So, let us say some 10 seconds and whenever you call your function; visualize G, what

this function is going to do is; it will wait for let us say 1 second and for this, use this

sleep statement we need to import time. It may put some delays in your code, so time dot

sleep 1 and here instead of showing our plot, what do we do is; we save our figure plt dot

save plot and let us say evolution dot jpg.

So, this plot is saved and once this plot is saved; we need to clear this plotting screen for

the next plotting to occur. So, what we have done is; we have removed the plt dot show

statement here and whatever the output graph is, we are having that output graph in a

separate file and that separate file keeps changing with time.

(Refer Slide Time: 14:50)

Let us execute this code now and see what is happening. So, let us come back, so here

we are and let us wait. So, here is our file evolution dot jpg let us open it and you can see

that now this code has started changing with time. Now this figure has started changing

with time and you can see that how more and more number of yellow nodes are popping

up in the network; how more and more number of green nodes are popping up in the

network, which shows that with time the number of obese people in this network is

increasing and with time the number of underweight people in this network is also

increasing, so it mainly depends on how you execute this code.

So, this was one way of looking at this animation; there actually millinines python

functions to look at this animations. So, for the sake of simplicity we have done it like

this time, but next time we will try to use a better approach, we will try to use a inbuilt

functions of python.

