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Fatman Evolutionary Model - Implementing Closures

We next want to implement closures in our model, whereas we have seen there are 3

kinds of closures; triadic closure we both have a common friend we become friends.

(Refer Slide Time: 00:13)

Foci closure; we both are going to the same gym, so we become friends; membership

closure I  am your friend,  you go to gym so I  start  going to  gym. Now, how do we

implement  these  closures  in  our  model  is  now  the  question.  So,  how  have  we

implemented these closures before? So we have used a formula if you remember.



(Refer Slide Time: 00:44)

So, what we have done is; if there are 2 people A and B and these people have let us say

some K number of common friends, then assume that each of these friends; each of these

common friends contributes to a probability p. So, one common friend contributes to a

probability of p that these 2 people will become friends. Assume the; it is 0.4, so one

person says that with 40 percent probability, these 2 people A and B will become friends

and then we looked at this formula that the probability that these 2 people will become

friends in the next iteration is 1 minus; 1 minus p to the power k.

(Refer Slide Time: 01:38)



So, we will be using the same formula for implementing all 3 kinds of closures. Now,

how do we implement it? First we will look at every 2 possible combination of nodes.

So, when we pick 2 nodes from this network; we will pick every possible pair of 2 nodes.

So, when we pick these 2 nodes from the network what can be their types; so, both of

these can be the person nodes; person A, person B or one can be a person node and

another can be a foci node. 

So person and foci node or vice versa foci node and person node, so, mainly one person

node and one foci node and in the last case both of these can be the foci node. How do

closures happen in all of these 3 cases? So, in the first case when there are 2 people node;

so if we look at the common neighbors, so these 2 nodes. So, we know that in our model

the common neighbors can be a person as well as the foci. So, we use the same formula

for both of these things, so we capture both the triadic closure and the foci closure using

the same formula.

So, we assume that whether it is a person which is your common friend or it is a foci

where both of these are going contributes to a probability p of them becoming friends.

So, as I told you that this is a very; we are trying to keep things very simple here. So,

once we write the complete coding; we can actually change both of these probabilities,

we can assume that or we can code it that if  there is a person node; it  has a higher

probability of making them friends and if it is a foci node, it has a less probability of

making them friends, but for now we keep both of these the same. So, whether it is a

common  friend  or  common  foci;  it  contributes  to  a  probability  p  of  both  of  these

becoming friends and then again we use the same formula. So, that formula helps us in

achieving both things here triadic closure and foci closure.



(Refer Slide Time: 03:38)

Let us now look at the second case, so here is a person and then here is a social foci; now

we look at their common neighbors. Now, if you look at their common neighbors; you

observe  that  their  common  neighbors  can  only  be  persons,  their  common neighbors

cannot be foci, why, because there are no edges between the foci nodes, so 2 foci nodes

are never connected to each other, it is the edges are only between person to person and

person to foci. So, we have a person and we have a foci here and all  their  common

neighbors are different-different persons. So, this means that this person here can have k

of his friends going to the social foci and again we assume that each of these common

friends contributes to a probability of p.



(Refer Slide Time: 04:44)

For this person also to go to this social foci and again we use the same formula. So, you

see how we just use one formula for implementing all these 3 kinds of closures; once we

call it we can actually change the things here and make it more advanced. Next, we want

to  implement  closure  property  in  this  graph,  in  the  meantime;  we  comment  the

homophily. So, that we can clearly see what is happening in closure and we have here

closure G.
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So as we have discussed there are 3 kinds of closures which we have to implement

become here define closure G and what you have to do for closure is we know that in

one iteration everybody is going to look at their common friends to any 2 people or any 2

people there going to look at  all  their  common friends and they are going to decide

whether in the next iteration, they are going to connect to each other or not.

So, what we do here is take an array let us say array 1 and this array will have 3 values.

So, how will this array look like; this array will be composed of sub arrays and each sub

array will be having 3 values. The first value is the first node, second value is the second

node and third value  is  the  probability  of  connection.  So,  when we are  going in  an

iteration  of  closure  G;  we  do  not  keep  adding  edges  side  by  side  like  we  did  for

homophily. Because, if you add an edge between you looked at 1 and 2 and you added an

edge between them, it can have complications for the addition of the coming up edges.

So, the addition of every edge should be independent of what has been added before. So,

to maintain that independence we have here this array; array 1 and so these are the kinds

of values this array 1 will holds, so here it can be 2, 5 and then 0.7 and so on. So, how do

we go about doing this, so initially we have this array 1 which is empty and then now by

after looking at all the nodes and their common neighbors, we have to decide whether we

have to add an edge between them or not.

As we have seen that for any kind of closure to happen, the only condition required is

whatever  nodes  we  are  picking  both  of  though  node  should  not  be  the  foci  nodes.

Otherwise,  if  both  of  them are  the  people  nodes;  it  results  in  a  simple  closure  and

otherwise the other 2 cases result in a membership closure and a foci closure; the only

condition is both of the node should not be foci nodes.

Now, what do we do is for u in G dot nodes and then for v in G dot nodes; now both of

these nodes should be the foci nodes at least one of these should be the person nodes. So,

if first of all u is not equals to v and either G dot node; of u G dot node u; type equals to

equals to person or G dot node; v, type equals to type equals to equals to person. So, one

of they should be person; in that case we have to implement that closure. We already

know; what was our formula for closure and we are using that same formula for all 3

kinds of closure.



So, here we find out the value of a probability p which is nothing, but our formula so our

formula was 1 minus, 1 minus p to the power of k. So, for having 1 minus p to the power

k; we have this function math dot power. So, we have to add this package math at the

(Refer Time: 08:47) which will do, so 1 minus math dot power and power 1 minus p to

the power of k, but now what is k here; k is the number of common neighbors . So, we

need the number of common neighbors between u and v. So, we have here k equals to;

find k equals to common neighbors.

So, let us have simple function in cmn common; common neighbors between u and v in

the  graph  G.  So,  now  we  need  to  define  this  function  here;  define  cmn  common

neighbors of u, v, G and how do we find its value is first of all we need the neighbors of

u.

(Refer Slide Time: 09:57)

So, neighbors of u equals to G dot neighbors of u and then neighbors of v equals to G dot

neighbors of v and we want the common one.
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So, for having common one we need a set intersection, so let us make both of these value

a sets. So, n u is the set having the neighbors of u and n, v is a set having the neighbors

of v and what we have to return is the length of the set which set n, u and n, v which only

looks at the common elements of u and v; to be written length of n u and n v. So, we

have this probability here; math dot power 1 minus p to the power of k. Now, we have to

feed these values inside our array which has to had 3 parts u, v and the probability of

connection.

(Refer Slide Time: 11:33)



So, we need a sub array here let us name is strength, so the first value which we are

going to append to temp phase u and the second value which we are going to append to

temp is v and then the third value which we append to temp is p.

So, temp has these 3 values and at the end we append temp in array 1; array 1 dot append

temp. So, we have made here this array 1; for all possible pairs of nodes, let us quickly

look at how this array 1 looks like.

(Refer Slide Time: 12:14)

So, let us print array 1 and see how it looks like; now we forgot to import the package

math, we go up and here we import math.



(Refer Slide Time: 12:35)

And at the end is this is become a (Refer Time: 12:37) code, so at the end for the time

being we comment and visualize functions as well and now let us look at the array.

(Refer Slide Time: 12:42)

There is some problem, so this p here; p in the formula, this p here was supposed to be a

constant. What was that constant value of probability? That is the probability each of

your common neighbor contributes to u forming a connection. Let us come back, when

we come here to closure p equals to this probability is supposed to be some value here.



So, let us say each of my neighbour contributes 0.01 probability of connection; let us

rather  say 0.1 probability  of connection;  then the more common neighbors we have,

morer probability of connection becomes; let us go back execute it.

(Refer Slide Time: 13:52)

So, now you can see here your array and as we can see that as of now most of the values

are  here 0 and there is  a  reason for  it  to  be 0 because  there  are  very less  common

neighbors here.

(Refer Slide Time: 14:10)



So, you can see here in some cases we have here this value here 0.09998, so since it is

the very beginning of our codes. So, initially we had seen that the common neighbors

only  exist  between,  so  there  is  no  homophily  as  of  now;  we  have  commented  the

function homophily. The common neighbors will exist only when 2 people are the part of

same social foci.

So, you can see here if you look at the nodes here 100, 87 and then 100, 74; 100, 56. So,

these are mostly the people node, which are connected to the same social foci and this is

the probability of these 2 nodes getting connected with each other. So, we apply a closure

here,  it  is  mostly  since there is  no edge between 2 people;  it  is  mostly going to be

happening a foci closure only. So, here was this array 1; now we have to make edges in

accordance with this array 1.

(Refer Slide Time: 15:21)

So, that is very simple; so, we go for each in array 1; so, for every entry in array 1; what

do we do; our first value, first node is each 0 and then our second node is each 1 and then

our probability of connection is each 2. As we have done before, we choose our random

real number from 0 to 1; r equals to random dot uniform 0 to 1 and if r is less then p, we

add an edge G dot add edge; edge between u and v.

So, this is one iteration of our function closure let us execute and see it.



(Refer Slide Time: 16:10)

So, here we will visualizing our graph as well, so this is our initial graph looks like; let

us see what is going on here. So, actually there are no intersections here it has just, ok.

(Refer Slide Time: 16:13)

So, you can see here every node is actually the part of exactly one social foci here, we

will zoom this graph and see and now this is what happens after closure. So, let us see

what is happened after closure; let us look at this. So, you can see that there are more and

more edges which have been added between people. So, 18 has now become connected



to 28; 28 has become connected to 24 because they were all the part of the same social

foci gym.

So, you see how here the edges between people have been added, so as we can see here

that  probability  of  connection  seems  to  be  very  high.  We  do  not  want  this  high

probability of connection, so for that what we can actually do is; we go back and we

deduce this probability here.

(Refer Slide Time: 17:22)

So, let us say one common neighbor contributes 0.01 probability of connection. Let us

now look at, so this is our initial graph and let us see what happens here now. Let us

again pick 1 here; let us say we pick this karate club and then you can, now here see that

the probability of connection has reduced. So, this karate club leads to the formation of

some number of edges between 2 people.
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We might want to see other kinds of closures as well, so till now here only 2 people were

getting connected to each other because of having a common social foci.

(Refer Slide Time: 18:05)

So, for that we would like to do homophily first so that we have some edges between the

people as well and then we visualize and then we apply closer. So, for looking at, so let

us for the meantime reduce this value and actually differentiating between the triadic

closure and foci closure is a little bit  difficult  because there we edge edit  between 2

people  only.  We would  like  to  look  at  the  membership  closure,  where  one  person



becomes a part of social foci because his friend is a part of social foci. So, let us try to

look at that; we put this coding in a loop. So, while one closure happens and it keeps

visualizing it again and again; now this is homophily, so, this is the graph. Now you can

see here, this node 35; it is going to the karate club as well as it is going to the gym.

(Refer Slide Time: 19:02)

So, this node 35; it has 2 social foci is here in which it is participating, but according to

our code initially node was assigned to exactly one social foci. So, most probably 35th

node was initially a part of karate club only; as we see then it has identified that one of

its friends 1920 or somebody was going to gym and hence 35 also decides to go and be a

member of gym. So, we can actually see a membership closure also happening here; you

can write this code, play around with it and look and verify it further and it will keep

happening till I do not stop it.

So, let us just stop it here control z; I will stop this code here. So, till now what we have

done is; we have made a graph having 100 nodes with different BMI’s where every node

is part of exactly one social foci. Then we implemented homophily here and then we

implemented closures here and we implemented all 3 kinds of closures; triadic closure,

foci closure and membership closure and we have also seen them happening on this

graph.


