
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

Lecture - 47
Strong and Weak Relationships (Continued) & Homophily

Fatman Evolutionary Model - The Base Code (Adding people)

 (Refer Slide Time: 00:05)

So, what do we do first is we have to create a graph on 100 nodes where everybody has a

different BMI. So, mainly we have this city and the city has 100 people which we depict

as 100 nodes. So, to make this graph first of all be import a function sorry be import a

package import networkx as nx and let us save this file, let us save this file as let say

evolutionary model dot p y. So, we save this file a evolutionary model dot p y. The

import networkx is nx, now we have to create a graph on 100 nodes which we know is

very simple we have already created many graphs.

So, what we simply need to do is first of all create a graph G equals to and x dot graph

and then we have to at 100 nodes here. So, we write G dot add nodes from and this

function demands a list here. So, what is the list here? Range 1 to 101. So, what will this

function do it will add 100 nodes to this graph with the indices being 1 2 3 4 up to 101.

So, this is one we do will get will soon look at another wave of doing the same thing.

And next I want to plot this graph and see how does it look like, so far as we know for

plotting we need import mat plot lib dot pyplot as plt and then we can use a function and

next dot draw G and then plt dot show.

(Refer Slide Time: 02:07)

I save this file let us run it and see, python evolutionary model dot py and here we can

see a graph with 100 nodes. Let us quickly look at another way of doing the same thing

for you might be already knowing it I am just repeating it.

(Refer Slide Time: 02:32)

So, here what we have done is we have made a list here and then passed it what we can

do is have a four loop here. So, we can do for i in range 1 to 101 what do we do G dot

add node i, and it creates the same output as before. So, when we run this file and we do

python evolutionary underscore model dot py we get the same graph perfect.

Next what we want to do is we want to a see some random BMIs to these people. So, for

assigning random BMIs to these people what we will do is. So, we will be first before

doing that we want to use a good use of we want to make a good use of functions here.

So, whatever will be doing will keep writing it everything in functions only. So, this

particular piece of code G equals to nx dot graph to add node i was for creating our

graph.

(Refer Slide Time: 03:44)

So, what we do here is we simply pass a function here G equals to create underscore

graph and this entire thing we shift under the function create underscore graph. So, we

have this function here - define create underscore graph and what this function does is it

creates a graph haven 100 nodes and it returns the graph G.

And these two statements nx dot draw G and plt dot show we are using it to visualize our

graph. So, what do we do is we define another function here define and then we name

this function as visualize, define visualize G what it does is it will draw or graph and

showing.

(Refer Slide Time: 04:39)

So, we pass both of these statements inside this function and whenever we have to see

this graphic simply called visualize G. So let us run it and see quickly.

(Refer Slide Time: 04:47)

So, we get here the output which we want it. So, till now everything is perfect. So, we

have a graph having 100 nodes.

Next what we want to do is we want to assign a body mass index to every person here in

this graph. So, here I have 100 people and you want to assign a BMI to every person. So,

for that again we take the help of a function and we call the function assign bmi and we

pass the graph G in this function.

(Refer Slide Time: 05:16)

So, let us write down the body of this function, we have define, assign, underscore bmi

and we have a graph G here. How do we assign a BMI so we know that BMI is going to

be a number from 15 to 40? So, what we are going to do is for every node in the network

we generate a random number from 15 to 40 and assign that number as the BMI of this

node.

(Refer Slide Time: 05:56)

So, since we need a random number we need derive package random here. So, we import

our package random here, and we come back to our function assign underscore bmi.

How do we assign a BMI to our node? So, probably you will remember we have used the

attributes of the node, we have learnt about the attributes of the node. So, we are going to

make the use of the attributes of the nodes. So, how do we do it for each in G dot nodes?

So, we have an iterator which iterates you every node in G. So, for each in G dot nodes

what do we do is we add an attribute G dot node each and let us have the name of this

attribute as name. So, better option was having the BMI here, but we are using the name

of the attribute to be name itself have a reason why I am using the attribute name to be

name here which you will understand as you see more of this code.

So, every person has here and attribute and the attributes name is name. So, the attribute

is name and the value of the attribute is random number, random integers from 15 to 40

what I do is random dot randint and it should be from 15 to 40. In addition to an attribute

name I want one more attribute associated with each node here and you guess what that

attribute is going to be. I told you that we are going to have two types of nodes in this

network. So, one type of nodes is corresponding to the people in the network and another

type of node is corresponding to the social for kind. So, will need to distinguish between

these two kinds of nodes, so hence I take an attribute here G dot node each and I name

this attribute as type.

So, G dot node each type equals to and these are 100 people. So, I name this as I keep the

value as person. So, for each of these 100 nodes there type is equal to person. So, we

have assigned a BMI to every node and let us put this assign BMI function before

visualizing the graph.

(Refer Slide Time: 08:31)

And let us run the code and see it now run the code and we see it so, but the graph looks

like the previous graph only so every node here has a BMI, but we do not see any BMI

here why, because currently or nodes are having no labels. So, we need to label our

nodes and this particular labeling which we want is the BMI. So, every node should be

labeled with its BMI. Every node should have a number written on it and that number

should be the BMI of this node.

So, how do we do that? After assigning BMI is to these nodes we want these as labels.

So, mainly we need a dictionary for all the labels which can be displayed.

(Refer Slide Time: 09:20)

We want the dictionary here let us name this dictionary as labeledict and to get this

dictionary labeldict we use a function get labels from G and this is not an implicit

function get labels we need to define these function. So, what do we do? We define this

function get underscore labels G and what this function is going to do first of all we

create a dictionary we have a dictionary here let us name it as dict to 1 and what will add

to this dictionary is the label for every node.

Hence for each in G dot nodes what we are going to do is dict1 and the value in the value

for each, so each is the key here, dict to 1 of each. So, each is am node here dict1 of each

should be equal to, what it should be equal to the BMI of this person, the BMI of each.

So, how to access the bmi of each BMI is are attribute we do G dot node each under BMI

was stored in the attribute named name and at the end we return our dictionary dict to 1.

So, here you see we get an dictionary labeled dict equals to get underscore labels G and

this dictionary has all the labels. Now to see these labels in our graph we look at this

function visualize G, we go above will see this function visualized G. So, it was having

nx dot draw G we need to add a small code here, we want the labels with the each node.

(Refer Slide Time: 11:16)

So, we add labels equals to and what should be the labels equals to a dictionary and what

was the dictionary label dict. Do you see a problem here? I will see a problem here, we

are using labels equals to label dict how does my code node what is, does my code node

what is label dict. So, you need to pass label dict as an argument here. So, we pass this

label dict as an argument here and similarly here while visualizing the graph G we need

to pass label dict here. So I hope that the code is clear do you.

So, I will just quickly recap what did we do is after assigning the BMI we created a

dictionary the name of the dictionary is labeled dict and what is the value what is this

dictionary carrying is this dictionary is having one key for each of the nodes in the

network and the value corresponding to that key, corresponding to that node is the BMI

for that node and then we written this dictionary dict1 and its collected in label dict. Now

we have a dictionary for all the labels in the graph to do visualize the graph we pass this

labeled dict and here by visualizing we have an extra parameter here labels which is

equal to label dict.

So, now we execute this code and see our graph. So, I execute our code and you see the

graph here.

(Refer Slide Time: 12:42)

So, when we look here at this graph you can see that every node is marked with the label

and the label is actually its BMI.

(Refer Slide Time: 12:51)

So, these are 100 nodes if you look at the labels for all these nodes the label the range

from BMI that is from 15 to 40 and then you can also see that there are two nodes it is

having a label 31 and this is also label 31. So, these two nodes they are having the same

BMI. So, here we get the graph where we get different different people and every person

is labeled with his or her own BMI.

(Refer Slide Time: 13:29)

Next what am I interested in, what I want in the graph. Suppose that we want to see this

difference in the form of the node size that is I want a person having a higher BMI to

appear larger as compared to a person who is having a lower BMI. So, what do we do for

that is I want to assign a size to every node and the size of the node should be equal to or

proportional to the size of a node should be proportional do its BMI. So, what do we do

for that is, I want an array here and this array consist of, this array consists of this sizes

of different node. So, I take an array here node size and the value of this node size is to

get the value I call a function get underscore size G.

And again this function get underscore size we have to define. So, we define this

function here - define get underscore size G and what this function should output is an

array of the sizes of different different nodes whatever size we want to keep in the graph.

I create an array here let us say array one and then for each in G dot nodes. So, I put an

iterator for all the nodes in the graph for each in G dot nodes what do we do? We do

array one dot append and what do we append in this array in this array we append the

BMI value extract that node and as we know how do we extract the BMI value of a node

is G dot node each and then we have here name. This gives us the BMI value of each

node and at the end we return array1. So, we get here and array node size which has the

size of different nodes.

We want to see it in the graph. So, to see it in the graph we first of all pass it in the

function visualize, so in the function visualize we also pass here the array node size. And

then when we are visualizing the graph what I do here is I include a new parameter

which says node underscore size. So, and the value for every node is to be extracted from

the array node size and also we need to pass this array here. So, let me pass node size

here.

(Refer Slide Time: 15:42)

You can also give different different names for like we pass there the argument node size.

So, here I can actually keep it n size and at the end I pass here n size. Just doing it this

way for the sake of clarity, we can also have, we can keep the same name for the

argument and we parameters and we can also give different names. Let us go back

execute this code and see.

(Refer Slide Time: 16:28)

(Refer Slide Time: 16:33)

Let us execute this code and what we see here is the size of the nodes have changed, but

we are not being able to. So, you can see here that some nodes are of smaller size some

nodes are of larger size, but still the difference is not very clear the graph does not look

very need. So, what I do is I go back to the code and for and for each value way

wherever we are collecting the size here. So, for each value what I do? I multiply it by

20. So, I scale the value for the size of every node by 20. So, that the graph looks cleaner.

(Refer Slide Time: 17:10)

And then we go back and then we execute this code. So, you can see here this looks

more beautiful from the previous graph.

(Refer Slide Time: 17:14)

So, you can say here the nodes which are having a high BMI such as 40 they appear in

the biggest; they appeared biggest in size and the nodes which are having a lower BMI

such as 15 they appear smaller in size.

So, till now we have just created a network on 100 people where every person has a

different BMI and the size of every person is proportional to his or her BMI when we

visualize this network. So, for the time being what I want to do is while visualizing my

graph I will now remove the labels. So, these are the labels which shows the BMI in our

graph, I will just I will remove the labels.

(Refer Slide Time: 18:04)

(Refer Slide Time: 18:07)

So, here we say that the node 10. So, can see that the node 10 is of the is having a very

high BMI, node 87, node 13 these are all having very high BMI and the nodes like 83,

64, 66 these are having smaller BMI.

