
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

Lecture - 35
Strong and Weak Relationships
Finding Communities in a graph

(Brute Force Method)

Hi everyone, in this video we are going to divide the nodes of a given graph into 2

communities using a Brute Force approach. Now Brute Force approach means we will be

trying all possible divisions of the nodes of the graph into 2 parts and after that we will

check which of these divisions is the best? Now how do we check which of these

divisions is the best? As per the definition of communities, the nodes which are a part of

a community; they form a lot of connections to the nodes of the same community and

they form very less connections with the nodes of the other communities.

So, here we are going to make use of this property and we are going to find the best

division out of all possible divisions and that is what you will display. So, let us get

started.

(Refer Slide Time: 00:59)

So, let me import networkx. So, let me create a function here, let us pass the graph here.

So, we are given the graph object, our aim is to divide the nodes of this graph into 2

partitions. So, let us first get the nodes of this graph. So, we can make use of this

function G dot nodes you might be knowing that this returns a list of the nodes of the

graph let us also check the total number of nodes.

So, we can write G dot number of nodes, now our aim is to divide the nodes of this graph

into 2 communities; let us call them first community and second community now on. So,

we have to divide the nodes this list of nodes into first community and second

community. Since you have to try all possible cases we would have to try all those cases

where the first community has one node and the second community has n minus 1 nodes.

All those cases where the first community has 2 nodes and the second committee has n

minus 2 nodes; and all those cases were the first community has 3 nodes and second

community has n minus 3 node s and so on.

So, we have to check for all these possible cases. So, if we find the combination of nodes

that are going to fall in the first community, it is very easy to get the nodes which are

going to fall in the second community because they are going to be all the remaining

nodes. So, our aim is to get all the nodes that may fall into the first community; basically

all the combinations of the nodes that may fall in the first community. So, how do we do

that? In order to get the combination there is a function in the package called itertools.

So, I am going to import that package and function name is combinations.

(Refer Slide Time: 03:39)

Let me show you the functionality of this function first. So, let me show you on ipython

console a how this work function works, let me import itertools here and let me show

you the functioning of the combinations function itertools dot combination. So, we pass

2 parameters in this function; first is the list from which we want the combinations and

second is some number that we pass which goes from one to the length of the list. So,

length of the list is 4 here, we can pass any number from 1 to 4 here let me pass 2 over

here.

So, what it does is it returns all possible combinations out of this list which are of length

2. So, let me run this, this another point to note here is that this function does not return a

list it returns an object, which has tuples of the combination as in the combinations are in

the form of tuples. So, when if you want to see that we will write maybe we can use for

loop for i in let me use this for i in this object print i. So, it has returned the combinations

in the form of tuples, since we are working in list we would want to convert them into

list. So, we can do that by just writing list over here. So, now, it is returning in the form

of list.

(Refer Slide Time: 05:15)

Similarly, if you want all the combinations which are of length 3 then you will write like

this. So, our aim here is to get all possible combinations of the nodes list which are of

length 1 2 3 and so on. So, let us get back here we are going to put all the combinations

in a list, let me create a list first say first community. Now I am going to start a loop for i

in range one to what is the length of our list that is n. So, I will written n by 2 plus 1 I

will explain why I get this. So, I will store these combinations that this function will

written in the form of a list and also since it is it returns the tuples I will pass convert

them into list. So, I will write list of x for x in whatever it returns.

Let me also pass the parameters. So, the parameters are going to be the nodes list and i.

So, as you can see the i is ranging from 1 up to n by 2 plus 1. So, why did we do n by 2

here? This is because the case is where the first community has k nodes, and the second

community has the remaining n minus k nodes and the cases where the first community

has n minus k nodes and the second community has k nodes. So, these cases are going to

be exactly the same these divisions are basically the same. So, there is no point of

checking all the n to 1 for the first community combinations. So, that is why we are

starting from 1 and we are stopping at n by 2 that is if the list nodes list has 10 element.

So, we will start from 1, 2, 3, 4, up to 5 and we are not going to check for 6, 7, 8, up to

10 cases, this is because they are going to give us the same divisions and there is no point

checking for the extra cases.

And the reason why we put plus one here is that you might be knowing the functionality

of this range function if you pass 1 comma n in range it goes from 1 to n minus 1. So,

since we wanted to go exactly up to n by 2 we are going to add plus 1 over here. So,

what is this comb variable going to have; this is basically going to have a list this comb

is a list of lists where all the list are having elements I, i element. So, as I showed you on

the screen comb is going to have all these 3 all these 4 lists for the value 3 and for the

value 2 it is going to have all these list, and after this our aim is to add all these

combinations to this list first community. So, what I am going to do here is first

community dot extend and I am going to add all the list that I am getting from this comb

based.

(Refer Slide Time: 08:57)

Now, let me tell you why I am using this extend function here and not the append

function, let me show you an over here why i used extend let me take some example

lists; let me take another list and yet another list. So, if I do l 1 dot append, l 2 what will

happen let me print l 1. See how it is adding the elements my aim was basically to add

this 3 4 2 this list which is having 1 2 already. So, when I write l 1 dot append l 2 were l

2 is itself a list this is how it does.

In case I want to add only the elements we make use of the function extend. So, let me

show you l 2 dot extend l 3. So, let me print l 2, now this is how it works and this is how

I wanted to be; that is why I have used this function extend this is because comb is a list

of list and I want to add the elements only to this first community. So, we are using

extend function here now we have stored all possible combinations of nodes in in this list

first community, now we should also do the same for the second community as I am

going to create a list here, now this is going to be very easy because all the remaining

node are going to fall into this community.

Now, you see we have the list of all the nodes we have the list of nodes which are going

to fall in the first community, we have to get the list of remaining nodes in the second

community. So, how do we do that? Basically we have to subtract the elements of first

community from the elements in nodes. So, how do we do subtraction in list? If you

want to do subtraction set is the appropriate data structure. So, what we can do is we can

convert the list into set and after that we can apply the subtraction operation for example,

I can write set nodes minus set first community. So, whatever it will give me it will give

me the difference of the elements from nodes, nodes minus first community it will give

me the difference of elements and that will also be in the form of set. So, I can later

convert them into a list. So, that is how I will get the second community lists. So, let me

store it here.

Now, since we have to do it for all the elements of first community we have to start a

loop here. So, I will write for i in range. So, I am going to do it for all the elements of

first community. So, I will write length of first community all right. So, we are going to

do it for all the elements of the first community and once we get the list in l we have to

append it to the second community list. So, I will write second community dot append l.

So, now, we have all the combinations in this list first community and all the

combinations of the second community in this list second community, and please note

that these 2 lists are themselves list of lists. So, we have the divisions in these list and we

have to find which division is the best.

Now, as I told you as per the definition of community communities, the nodes which are

a part of one community have a lot of connections with the nodes in the same community

that is there are going to be a lot of intra community edges and there are going to be very

less intercommunity edges. So, if a division is good then the number of intra community

edges should be high and the number of intercommunity edges should be less. So, this is

what we are going to use here. So, we are going to keep track of the number of intra and

intercommunity edges for all the possible divisions that we have made so far.

(Refer Slide Time: 13:49)

So, what you going to do now is which division is the best. So, this is what we are going

to check now, since we have to keep track of the number of intra community edges in the

first community we will create a list for it and we have to keep a track of intercommunity

edges in the second community we will create a list for it and we also have to keep track

of the number of intercommunity edges. So, we have these 3 list, now apart from this to

check which division is the best we are going to find the ratio where (Refer Time: 14:05)

in the numerator will have the sum of intra community edges, and in the denominator

will have the intercommunity edges.

So, whichever division has highest value of this ratio will mean that in that community

inside community; there are dense connections and outside community there are spark

connections. So, we are going to find this ratio for every division that we have made so

far. So, I am going to create this list as well, let me write here what this means ratio of

intra divided by this is basically number of intra and number of inter community edges;

alright.

Now, we have the nodes which are falling into the first community and the nodes which

are fall into the second community, arrange to find the number of edges that are existing

amongst the nodes in the first community and the same for the second community as

well. Now how do we find the number of edges amongst the nodes in a given community

because we have only as of now we have only the list of nodes. So, for this purpose we

are going to make use of function that is subgraph, which is given which is inside the

graphic object. So, we will make use of a the subgraph function let me tell you the syntax

for this function. So, this function is available in graph object. So, I will write G dot

subgraph and here I will I can pass the list of the nodes. So, in our case the list of nodes

are kept in first community and second community also.

So firstly, we are doing for the first community and for the first community also let us do

it for i we are going to start loop here, for i in range basically whatever we are doing we

are going to do it for all the lists given in the first community. So, we will start it for i in

range will write length of first community yeah. So, I was saying you about this sub

graph function this function basically takes as input a list of edges, and it returns a graph

object itself which is an induced subgraph over this list of elements, over this list of

nodes. So, whatever it returns is basically a graph and whatever operations you can apply

on graph you can apply on the written value of this function as well. So, if you want to

find the number of edges we can just use the formula that is number of edges. Since this

is itself or graph object as I told you subgraph returns an induced subgraph which is a

sort of graph itself. So, you can apply this function number of edges on the return value.

Now, whatever it returns we have to keep store that value in this list it is number of intra

edges; because this will give us the number of intra edges in that subgraph. So, I will

write number of intra edges in first community dot append all right. So, let me explain

you once again what this statement is doing. So, we have the nodes that are falling into

the first community and these are here first community i right. We are starting this for

loop from i goes from zero to the length of the first community, basically we are

checking it for all the possible combination. So, we have this list of nodes which we are

passing into this subgraph function which. So, this function will return an object of graph

itself. So, that will basically be an induced subgraph over these nodes. So, since that is a

graph we are calling this function number of edges to find the number of edges which are

existing amongst those nodes.

 (Refer Slide Time: 18:31)

For example, if you pass one 2 3 here this will tell us the number of edges amongst these

1 2 and 3 nodes ,if there is an edge from 3 to 4 let us say, that will not be counted here

that is because 4 is not a part of this subgraph. So, that is how we will get the number of

edges and that information we are storing in this list as we know created this list number

of intra edges one that is for first community. So, we are appending that information

here.

Now, the same thing you have to do for the second community as well. So, we are just

going to copy paste it and I am going to write second community here and information

has to go to this second list and here I will write second yeah I think we are done. So,

now, we have the number of intra edges in the first community in this list and we have

the number of intra edges in the second community in this list, now we have to find the

number of inter edges.

So, we can easily find the total number of edges in the graph right let us do that e is equal

to G dot number of edges right. So, we got the total number of edges here and we have

the intra edges in first community and we have to intra edges in the second community.

So, we subtract these all these intra edges from the total number of edges, we will get the

number of inter edges intercommunity edges. So, let us do that. So, what we will do is e

minus number of intra edges in first community; we are going to start a loop now minus

number of intra edges in the second community.

And we have to do it for all values of i. So, I will start for i in range length of here we

can use length of first community or second community because they are the same. So,

number of intra edges or to maintain uniformity I will write first community itself here.

So, we have to keep this information in this list that is number of inter edges. So, i like I

will write it here I am sorry. So, in this list number of inter edges dot append.

(Refer Slide Time: 21:34)

So, we have to append this information here. So, now, we have the number of intra edges

in this list, we have the number of inter intra edges in the second community in this list

we have the number of inter edges in this list.

Next thing is to find is the ratio. So, let us find the ratio. So, again we have to start this

loop am going to copy here.

(Refer Slide Time: 22:03)

I am sorry. So, we have to find the ratio for all these possible combinations; ratio is going

to be the divisions of number of intra edges with the number of inter edges. So,

numerator is going to be the total number of intra edges, we have intra edges in 2 lists.

So, we are going to sum them up the value from this list plus the value from this list. So,

I will write number of intra edges 1 for the i th combination, plus number of intra edges

in 2 for the i th combination. So, we have to sum them up and then we have to divide

them with the number of inter edges for the i th combination. So, since I want all the

precise values. So, I will write float here and this will give me the ratio and this ratio I

am going to keep in the list that I have already created by the name ratio. So, I will write

ratio dot append.

(Refer Slide Time: 23:15)

So, let me explain you once again what this statement is doing we are finding the ratio of

the intranet inter edges. So, on the numerator we have the total number of intra edges and

in the denominator we have the total number of inter edges, and this ratio we are just

keeping in this list which is named ratio and we have already created that list. Now we

have all the ratio in this ratio list and our aim is to find the list the best value of this ratio

that is the maximum value of this ratio. So, what we can do is. So, let us create the

variable max value is equal to. So, this is a function that you can use max function and

the parameter can be the list this returns us the maximum value in the list ratio.

Now, our aim is not to get the maximum value basically, our aim is to get the index at

which the maximum is coming so that we get to know; what was the best division? We

can make use of the index function from the list that is ratio. So, what we can write is

ratio dot index max value. So, what it will return is it will return the index of the max

value here. So, I will write max index is equal ratio dot index. So, this index is what we

are interested in; this is because this index tells us the division which is the best division

out of all possible division.

So, now we got this max division I am sorry max index that is the best index, and in the

first community and in the second community list we have the divisions of nodes into

first and second committee. So, we are going to access the division out of this list and out

of this list which is falling at this index. So, what we are going to do is we are going to

basically print the final result. So, I will write first community and which element the

one which is falling at max index and similarly second community we are going to

access the element which is falling at max index.

Now, I am going to print these. So, let me just do some representation thing here. So,

after this is done and I will add a bracket here and then I will start the other 1 and this

and then I will close it this is about the representation. So, this is how our lists 2

divisions will be printed divisions of nodes into 2 communities. Now the function is

return we have to now call it and use it we want an example graph here. So, let me take

an example graph here the function name is communities brute. So, let me call this and

let me pass this graph as an example graph let us take this graph which is called barbell

graph, I am going to show you what this graph looks like let us pass 2 parameters here.

So, let me go back to the ipython screen and I will show you how this graph looks like.

(Refer Slide Time: 26:50)

So, let us go here, here let me import the package networkx and I will show you how this

graph looks like. So, I will take a graph G is equal to n x dot barbell graph, and I am

going to pass the same parameters. Now what it indicates I will show you in the

visualization. So, I will write n x dot draw in order to show this I need matplotlib. So, I

will import matplotlib dot my plot as p l t and I will write p l t dot show.

(Refer Slide Time: 27:39)

Now this is a graph that comes out of these 2 parameters 5 and 0. So, let me explain you

what this parameter indicate; the first parameter which is 5 here it indicates that there

should be 2 clicks of size 5, as you can see here first click and the second click and they

should be connected by a path which has these nodes which is 0 node here.

(Refer Slide Time: 28:08)

So, this is a path which is connecting these 2 clicks and it has 0 node. So, this is how it

looks like let me change the parameters a bit and show you how it comes out to be.

So, if I pass 4 and 1 let us see how it looks like. So, we passed 4 comma 1 which means

it should be 2 clicks of size 4 as you can see and they should be connected with the path

which has one node. So, the same is showing here.

(Refer Slide Time: 28:43)

So, this is one node in between. So, this is a kind of barbell graph, I plan to take this

graph because the kind of community is required to visible here and it is also small. So, it

would not take much time for the testing. So, I am going to take the graph.

So, let us go and a test this function this is yeah. So, these are the 2 communities that we

get if you remember we passed 5 comma 0 which means 5 plus 5 there are going to be 10

nodes, and these 10 nodes are divided into 2 communities where the first community

have 0, 1, 2, 3, 4 and the second has 8, 9, 5, 6, 7. Let me quickly show you once again

what kind of plot we were getting when we pass these parameters see this is what we got.

(Refer Slide Time: 29:20)

So, here you can see that communities are clearly visible that these should be the

communities and our brute force algorithm is nicely able to differentiate the

communities.

(Refer Slide Time: 29:28)

So, as you see 0, 1, 2, 3, 4, 5 are falling to one community, and the rest are in the second

one. So, that is what we are getting here. So, the brute force algorithm is working fine,

next we are going to see the Girvan Newman algorithm for community detection.

