
Social Networks
Prof. S.R.S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

Lecture - 21
Handling Real-world Network Datasets

Datasets: Analysing Using Netwrkx

 (Refer Slide Time: 00:06)

Hey everyone in the previous video we had downloaded a number of network datasets in

different formats, in this video we are going to see how we can analyze them using

Networkx package of python; let us take a look at the datasets that we have downloaded.

(Refer Slide Time: 00:25)

So, these are the datasets that we downloaded in the previous video. So, we had 6

networks, we have a network in g e x f format, we also had a Facebook network in

edgelist format, we had a football network in dot net format which it is equivalent to

pajek format and we had karate club network in g m l format, we also had karate network

in pajek format and we also had a Wikipedia network in Graphml format.

So, these were the 6 network datasets that we had, now we going to see how we can

analyze them. So, I have all the datasets in this folder, I am going to create a new python

file here where I will be writing all the 4. So, data sets dot py I am going to open in it in

an editor I am using sublime text here can use any editor for that matter.

(Refer Slide Time: 01:26)

Since we are going to make use of networkx package and I am going import it, we are

also going to visualize the networks. So, I am going to import matplotlib as well. Now let

us take the first network in this folder we have let us make use of this Facebook

combined dot txt network which is in edgelist format let me copy this name.

So, now since the Facebook network is in Edgelist format, the function that we are going

to make use of is read edgelist. So, I am going to write g is equal to n x dot read edgelist

and here I am going to get the name of the network. Now our datasets are kept in a folder

I am sorry I think that is the name (Refer Time: 02:30). So, in that we have this is the

name of the network. So, the you see the function that we are using is read edgelist

function which is present in networkx package, and as a parameter we are giving the

name of the network. Now this function basically takes the network in a in the edgelist

format and returns a graph object; and then we can apply any function on this graph

object.

For example if you want to look at basic information of this network we can write n x

dot info on as a parameter here give G. So, info is function which provides a basic detail

as to the number of nodes number of edges etcetera about to graph. So, let us save this

file.

(Refer Slide Time: 03:26)

And I am going to open my terminal here, I am going to run this file. So, all right. So,

here you see firstly, it tells us the type; the type is graph as in it basically tells us whether

it is digraph or directed graph or it is multi graph and it tells us the number of nodes, it

also tells us the number of edges and the average degree.

So, these are just a basic details about the graph, now let us go back to our file and add

some more things. So, this is what the basic things if you just want to get the number of

nodes you can write. So, now, n x dot number of nodes is a function which returns you

the number of nodes if you have to just get the number of nodes, you can use this

function and similarly if you want the number of edges if you do not want all the other

information you can use this. And in case you want to know whether the graph is

directed or not, then you can make use of this function print n x dot is directed. So, as a

parameter you pass the graph.

So, this should tell us whether the graph is directed or not, let us go back and try to run

this. So, here you see after the basic statistics it told us the number of nodes and edges

and it is false that is it is non directed. So, this Facebook network that was a friendship

network it is basically undirected network. So, that was about how we can we read and

edgelist network into networkx object. Now let us see the other kinds of networks that

we have, we also have here dot net format as I told you in the previous video that dot net

format is basically the pajek format. So, in order to read this network into the networkx

object we will use pajek functions.

So, let me show you how to do it. So, what I am going to do is I am going to use this

function read pajek, which is a function that is used to read a dot net or dot paj file. So,

let me check the name of the network football dot net. So, change it. So, I am reading

this dot net network through this function read pajek into a graph object g, and then I

applying all these operations let us see and we run this.

(Refer Slide Time: 06:10)

So, here you see that the type of graph is multi digraph; that means, there are multiple

edges between the nodes, and it is also directed graph and it is telling us a number of

nodes number of edges, and since it is a directed graph it is telling us the average in

degree and average out degree, and after that again it is giving the result of the functions

number of number of nodes number of edges, and it is true which means it is a directed

graph.

So, this these are just the basic functions, let us see what other kinds of networks do we

have. We have g m l network we have a pajek format as well let me show you that for

reading the pajek files as well, you use the same function that is read pajek. So, the

network name is karate dot p a j. So, I will replace this ok.

(Refer Slide Time: 07:15)

So, when I run this, I am getting that this is a multi graph and the number of nodes are 34

number of edges is 78 and this is a average degree and it is not a directed graph. So, it is.

So, I getting false here ok.

(Refer Slide Time: 07:35)

Now, 2 more network formats that we have are graphml and g e x f. So, let me show you

quickly show you how we can read them as well. So, graph m l how do we handle it we.

So, let me the function that we use it read graph m l and the file name is Wikipedia dot

graph m l. So, this is how we will use it; since this is written information I am going to I

am going to comment this, now let me run this all right. So, what we getting here is that

it is a digraph Wikipedia because this is graph between that the nodes are the articles. So,

is it basically tells us whether an article is referred to in the other article or not. So, it is

basically a directed graph 921 are the number of nodes number of edges are giving and

since it is directed we are getting in degree as well as the out degree, the average in

degree and out degree and it is true that means, it a directed graph.

So, let us go back here and the only format that is left is g e x f, let me quickly show you

how to convert into graph object as well and copying it is name and here let us go back.

Since this is a g f; g e x f format will make use of function read g e x f and (Refer Time:

09:24) name of the function let me rename this, so that it does not create any problem

and let me rename this is well. So, it should work let us see. So, this is how we can read

various networks in different formats and convert them into a graph object; once they are

converted into graph object we can apply various functions on them and we can play

around with them. Now let also show you how we can visualize a network in networkx

package.

So, let me take a small network, let me take karate network itself and we had it in g m l

format. I thing we have in that video we can quickly add it. So, the function is read g m l.

So, if you have a graph which is in g m l format, the function that you will used is n x dot

read g m l. So, all right. So, we read a karate network which was in g m l format, we

made use in function n x dot read g m l.

(Refer Slide Time: 11:05)

So, let us execute this program. So, this is a simple graph and this is a number of nodes

and edges and it is and undirected graph. Now let me show you how we can visualize

this graph? I am going to comment this; I am going to comment this as well.

Now, the function that we used to visualize the graph is n x dot draw, and the parameter

we will do the graph that we have to draw in order to see that graph we have to use this

function p l t dot show, basically the show function which is available in matplotlib. So,

that is how we will be able to see this graph, now let me run this all right. So, this is all

graph the karate network, and the labels are given here. Let me also show you a few

features that this interface provides for example, this when you click this you can just

move the graph the way you wan,t and the next option is zoom to rectangle. So, when

you click that if you want to carefully observed some part of the graph you can just zoom

it and see and if you further want to do that you can do the way you want and then you

can go back then you go then go back. So, these are few functions that few features that

you can make use of, and this is configures subplots this will be used when we plot

something this is just a graph, I will show you the functionality of this later then this is

how you can save the figure ok.

Let me close this window now let me go back to the program; let me also show you how

directed graph in networkx looks like. Since this karate is in undirected graph let me

comment this and if I am not wrong this football network was a directed network. So, I

am doing the same analysis on football dot net.

(Refer Slide Time: 13:13)

Let me execute it again, you see this is how directed graph and networkx looks like. So,

you see the arrows are represented like this, if you want to zoom it again you can make

use of this feature.

You want to zoom this area you can further zoom it is well. So, this is how you can

closely analyze whatever you want in the graph right and you can then go back or you

can just press home here. Then you can save the graph is well let me close this now I am

going to continue the rest of the analysis on karate networks.

(Refer Slide Time: 13:51)

So, I am going to on comment object back. Let me also show you that there are different

layouts which are available in networkx for example, we have as if now use this function

n x dot draw, we can use another function if you want to different layout. So, we can use

n x dot draw circular. So, this is one of the layouts there are various layouts available, let

me show you the output that we get in this case.

(Refer Slide Time: 14:23)

So, here the all the nodes are arranged along a circle and the edges between them are

shown like this. So, this is called circular layout, there are number of other layout as well

for example, spectral layout and spring layout. So, you can just read the documentation

about them. So, we have visualized the network let us close this and let us go back to our

program and we can do some basic analysis on this, one of the thing that we can check

on this network is we can check the degree distribution.

(Refer Slide Time: 15:00)

Now, what is degree distribution? Degree distribution basically tells us how many nodes

are there in the network, that have a particular degree. So, this is done for all possible

degrees that a node can have in the graph; a let us take this example graph. So, here how

many nodes are having degree 1? So, node number 4 and node number 9 they are having

degree 1. So, corresponding to 1 will have 2 and similarly we can check how many

nodes are having degree 2, how many nodes are degree 3 4 and 5. So, these are all the

possible degrees that nodes can have in this graph and corresponding to the degree we

have the number of nodes that have that particular degree. So, this basically is called the

degree distribution of the nodes in a graph. Now it is always nice idea to plot the degree

distribution to get a better idea of the graph.

So, when we plot this we get this kind of distribution. So, on the x axis we maintain the

degree and on the y axis we maintain the number of nodes that have that particular

degree. So, this is the kind of plot that we get for this example graph, we can check for

our datasets what kind of degree distribution to the exhibit. So, let us go back to our

program and let us try to check what kind of degree distribution this karate network has.

For that purpose I am going to create a function to plot the degree distribution of this

graph G. So, let me create a function here, before we implement function I want to show

you a few things on the ipython console. So, let me copy this and let me open the ipython

console here.

(Refer Slide Time: 17:03)

So, basically I am I just copied those first 2 statements here, and let me also copied this

statement here ok.

So, we have the karate network in the object G; now if I want to see the degree of each

node in this graph I can make use of this function n x dot degree G.

(Refer Slide Time: 17:33)

(Refer Slide Time: 17:36)

So, what this function does this degree function it basically returns a dictionary, where

the key is the number of the node and the value is the degree of that node. So, here we

get the dictionary for all 34 nodes, we are getting the degrees of these nodes. Now let us

go one step back and recall what is our (Refer Time: 17:56) is to have the degree

distribution of nodes in the graph.

So, basically we want that for particular degrees how many nodes are there in the

network that are have in that degree. So, we basically first of all want to get the possible

degrees that the nodes are having in this network. So, we are getting the dictionary here

where we are getting all the possible values of the degrees that is in that the nodes can

have. So, what we are interested here in is basically the values. So, what I can write is n

x dot degree G. So, this is going to give me a dictionary all I am interested n is the value.

So, I am going to write dot values here.

(Refer Slide Time: 18:41)

(Refer Slide Time: 18:43)

So, it should return me earliest which is having all the values. So, what is get here is

basically all the possible degrees that the nodes are having. Now my aim is get the

possible degrees that the nodes can have; here you see there are lot of reputation. So, I

want to get the unique degrees. So, in that case what I can do is, I can just write all this

inside of function set.

(Refer Slide Time: 19:13)

So, what it will do is, it will convert the output into a set and we know that in set there

cannot be in reputations. So, what we get is the unique values, basically the unique

degrees that the nodes can have in this particular network. Now a list is more flexible

data structure as compared to set because we can perform lot of operation. So, I can

further convert this into list if I want; this is basically up to you how or you want to

handle the data.

So, I convert this into a list now what I get finally, is a list of all the unique values of

degrees that the nodes can have in this network. So, I should you here so that we can see

what is going on in the function. Now let us get back and use these functions in the

function that we are creating. So firstly, I want all the degrees. So, I will write n x dot

degree G, I want all the values only I do not want the dictionary. So, I will write dot

values. So, here I get all the degrees let me comment all the degrees.

Now, I am also interesting getting all the unique degrees so that I can see what is the

possible degree values. So, what I am going to do the same thing that I did on the

console, I am going to pass all degrees here. So, here I will get all the unique degrees.

Now to get the degree distribution what I basically want is I want to out of all the values

that are there in this list unique degrees, I want to see how many nodes are having that

particular degree. So, basically what I will do is I will fetch one element out of this list

that is unique degrees, and I will see how many occurrences of that value are there in all

degrees right.

So, probably I can start for loop here. So, I will write for i in unique degrees sorry for i.

So, what I want to check is how many occurrences of i are available in all degrees. So, I

can start a variable probably x is equal to all degrees dot count. So, we have this function

count in a list, which tells us the occurrence number of occurrences of a particular

element in that list. So, x will be telling us the number of occurrences of the degree i in

the list all degrees. So, probably we can keep a track of all these values. So, we can

create another list count of degrees I will I started a empty list and so I am going to

append the x values to this list. So, basically the occurrences of the first degree are now

stored in the list count of degrees.

So, after this for loop is finished we will have all the degree distributions in this list that

is called count of degrees, and then we can plotted at. So, let us try plotting is it. So, p l t

dot plot as you might be knowing there are 2 parameters that have to be passed here. So,

on the x axis we want all the unique degrees, and on the y axis we want have many nodes

have that degree which we have stored in count of degrees. So, will pass that here. So, let

us try plotting it. So, I will write p l t dot show we have not call this function x.

(Refer Slide Time: 23:20)

So, let me call this function here and comment this. So, I will call this function plot

degree distribution and I will pass this G here ok.

(Refer Slide Time: 23:38)

(Refer Slide Time: 23:40)

Let us go back here not here will go will try (Refer Time: 23:39) this. So, this is the

degree distribution that we are getting for the karate club ah network.

So, this is the x axis where the possible degrees are there and on the y axis the number of

nodes having that degree are there, and we you can just again play around with this plot

as I told you, you can just use this to move the plot, you can use this to zoom of

particular part and you can just go back as well and this is a feature that you can use here

basically you can just increase or decrease the x and y margins. So, this is up to you

whatever way you want it, and you can always reset it is well. So, let me close it. So, this

is basically up to you how you can how you want to visualize it. Let be close it there was

no x and y axis as you see. So, we can do that. So, let me just quickly do that, before that

you can also change the way this plot is appearing so, if I put these dots you will get the

plot in the form of these dots ok.

(Refer Slide Time: 24:56)

So, you get yellow dots here and you can also put line here and dots is well. So, we will

get both the things.

(Refer Slide Time: 25:06)

So, this is plot that you getting; one thing to observe here is that most of the real world

networks exhibit power law degree distribution, which means that there are very few

nodes which have very high degree and there are lot of nodes which have very less

degree. So, the same is being followed in this small network is well, apart from one

exception of this node. So, that might happen in some cases, but in general real world

networks have this power law degree distribution ok.

So, let us go back and add a few more things may be let us add the x label. So, let us add

degrees here and then we can add the y label as well may be number of nodes and maybe

we can add the title as well and degree distribution of karate network.

(Refer Slide Time: 26:17)

So, let us sum this you get the title and the x and y labels as well. So, you can just use

more features more functions and decorate this plot the way you want. There is one more

thing that usually is done in case of power law degree distribution, we can also check the

log log plot of that.

So, how can we do that we can just replace this plot by log log. So, in that case it will

give as a log log plot which basically means in take the log of x axis it take the log of y

axis, and if network is following complete power log the log log plot should be in a

straight line. So, let us see what kind of plot we get in this case.

(Refer Slide Time: 27:01)

So, here firstly, we had section here. Secondly, it was not perfect power law. So, we have

this kind of line which is not exactly straight. So, this is the kind of log log plot that we

getting in this case. So, this one about the degree distribution, now I am closing it let us

go back here and see some more properties that we can analyze on this network we done

with degree distribution let us go ahead. So, next thing that we can check is density.

(Refer Slide Time: 27:27)

Density value of graph basically tells us whether it is a parts graph or it is a dense graph

with respect to the number of edges present. So, if there are n nodes in a network, the

total possible edges that that network can have will be n choose to. Out of these n choose

to edges how many what is the fraction of the edges that are present in the graph is

basically what is stored by the density value.

So, if it is a simple graph the density value between will be between 0 and 1, and if it is

empty graph the density will be 0 if it is complete graph density will be 1; however, if it

is a multi graph where more than one edges are allowed between 2 nodes, in that case

density value will be more than one can be more 1 for example, in this diagram you see

simple graph with 9 nodes. So, the total possible edges that can be there in this network

will be 9 choose to which is 9 into 8 divided by 2 that is 636. Now the number of edges

that are present actually in this graph are 11. So, the density is going to be 11 divided by

36 and that is equal to 0.31. So, the graph is not very dense. So, this is the kind of

indication that the density value gives us.

 (Refer Slide Time: 29:06)

So, we can go back to the console and see the density value for few networks for

example, let me go here and let us create (Refer Time: 29:04). Let us create a complete

graph. So, I am going to write G is equal to n x dot complete graph of say 100 nodes. So,

since it is a complete graph what should be the density value let us check n x dot density.

So, this is the function density which is available in network x, which will give us the

density value; obviously, in case of complete graph it is going to be 1. Let me now create

in other graph let me repeat n t n x dot graph. So, I have not added an a edges into it let

me add few nodes here. So, I am going to pass list. So, I am passing only 4 nodes.

Let us check the density value of this network. So, since we have not added any edge;

obviously, the density value was going to be 0; and let us go back here and see what is

going to be the density value for are network karate network. So, what I will write is

print (Refer Time: 30:26) density is. So, n x dot density sorry and I am to pass G here let

us go back (Refer Time: 30:40) density is 0.139.

(Refer Slide Time: 30:40)

So, basically it is sort of parts graph, so that we can check. So, that is about the density,

let us go back and see few more things that we can check on these networks.

(Refer Slide Time: 30:55)

Next you can see clustering coefficient. So, for a given node clustering coefficient

basically tells us the number of lengths that are present amongst the neighbours of this

node with respect to the total number of lengths that can be possible.

(Refer Slide Time: 31:15)

I will show you using example let us take this network let us try to find out the clustering

coefficient for this nodes 6. So, as you can see this node as 5 neighbours write these are 1

2 3 5 and 8. So, there are 5 neighbours. So, what we have to check here is the number of

links that are present amongst these neighbours, that is the number of links amongst 12 3

5 and 8.

As you can see we see only one link that is there between 2 and 3; there is no other link

present amongst these neighbours. So, on the numerator we will put 1 and on the

denominator we will put the total possible links that that can be there amongst these 5

nodes. So, amongst 5 nodes total possible links can be 5 choose to which is 5 in to 4

divided in 2 that that is 10. So, in this case the clustering coefficient of this nodes 6 will

be 1 divided by 10. So, in case of friendship network, this clustering coefficient basically

tells us how closely net the friends of particular node are. So, we can calculate the

clustering coefficient value for every node and then we can find the average as well. So,

average clustering coefficient for they tells us the amount of clustering present amongst

the nodes in the graph.

(Refer Slide Time: 32:44)

So, let us go back and try to check the same for our network. So, I am going to comment

this, the function that we can use for finding the clustering is n x dot clustering; however,

this function basically returns a dictionary which gives the clustering coefficient value

for every node. So, you can always I treat over this dictionary. So, what I will do is, for i

in n x dot clustering G. So, I am interested in all the items. So, I will write dot items I

want to print i. So, I am going to comment this.

So, what we are doing here is this n x dot clustering is returning a dictionary, which

contains the clustering coefficient values for all the nodes, we are just going to print

them. So, let us run this.

(Refer Slide Time: 33:38)

(Refer Slide Time: 33:45)

So, we getting this dictionary, where for every node we are getting the clustering

coefficient value. So, if you want the average clustering coefficient we can either average

these values or we can directly make use of another function which is n x dot average I

am sorry average clustering. So, this should tell us the average clustering present in the

network. So, you see 0.57 is a average clustering. So, more this value more the clustering

and more title in it the people in the friendship network r.

(Refer Slide Time: 34:26)

That was about the clustering coefficient let us go back and check few more properties.

So, what is the diameter of a network? Diameter is basically the maximum shortest path

that we have to travel to go from one node to the other for example, if you know about

all pair shortest path algorithm, it basically the returns the metrics where the values are

the length of the shortest path being the 2 nodes. So, is it as that for every pair of the

nodes. So, whatever is a maximum value in that metrics will be the diameter of the

network.

In other words it is the shortest path between 2 most distant nodes in the network. So, for

example, if you see node 1 and node 9. So, if you have to go from 1 to 9, you would have

to traverse this path 1 to 6 to 5 to 9, there is no other shortest path between them. So, the

length of this this path path is 3, and we do not see any other shortest path which is

longer than this 3, if you want to go from 1 to 4 again the length to the path is 3, if you

want to go from 3 to 9 the length is 3. So, we do not see any other shortest path which is

more than 3. So, that is why the diameter of this network will be 3, we can check the

diameter of r network here is well.

(Refer Slide Time: 35:54)

So, I am going to comment this and let us check the diameter. So, I will write diameter

is. So, I will the function that we can use is n x dot diameter G.

So, it should give us the diameter. So, diameter is 5. So, so there are 34 nodes here, and

the diameter is 5; it is basically observe that in real world networks the diameters is

basically very less because the nodes are connect to each other and that makes the

distance between them very small and let us how the diameter reduces. So, these were

just the few point of an analysis that we performed on the networks that we downloaded.

That the main thing to notice here is that once you get the network in the networkx graph

object you can just play around with it you can apply all the functions that are available,

you can just read the documentation and apply the functions which are relevant for that

network and you can go ahead with your analysis.

