
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

How to go Viral on Web
Lecture - 164

Coding cascading Model

So, next what is our aim? Our aim is to determine the influential pair of nodes. For actual

question is we want to see that which nodes in our network are the most influential.

(Refer Slide Time: 00:18)

So, we want to determine the influential nodes in a network, but how do we know which

nodes are influential. And what does it mean when I say that these bunch of nodes are

influential. What we are going to do that is; experimentally speaking, programmatically

speaking, what we are going to do is we can have certain set of (Refer Time: 00:45)

nodes from where our infection will start.

(Refer Slide Time: 00:47)

So, let us say there is a meme which wants to traverse on a network which is traversing

on a network, let us say the network is something like this consisting of let us say some

20 nodes, 20 nodes some network. And now, we want to see out of these 20 nodes which

nodes are the most influential? What we can do for that is if I want to compare let us say

2 sets of nodes, I have a set 1, 6 and 10, so these 3 nodes and I have another set let us say

2, 16 and 17. And I want to see that which out of these 2 sets is most influential.

What I am going to do is initially in this network I infect these 3 nodes with my main, so

I will say that node 1 is infected with the main, node six is infected and node ten is

infected. And then I will run an infection model, I run cascading model infection or a

cascading model. And I will see when this model stops, when this process stops how

many nodes in whole are infected. So, let us say that this is the set of nodes which are

finally infected, let us say these are the set this is a set of nodes which is finally infected.

So, there are 6 nodes in this set. So, I can say that the influential power of this set is 6.

And then to determine the influential power of this another set I can again do the same

process. I will initially, in fact these 3 nodes to 16 and 17 in the network, I run my

cascading model. And will see at the end how many nodes are infected and let us say 8

nodes are infected; it means that the influential power of this bunch of nodes this set of

nodes is 8 ok.

So, this is the way we are going to find which set of nodes is most influential. So, to find

which is most influential, we probably will take all possible set of nodes on these 20

nodes network and then determine their influential power and then see that which one

creates the maximum cascade. And that is actually very time consuming process ok, but

here we talked about the infection or cascading model. So, what is this infection or

cascading model, let us talk in a little bit of detail.

(Refer Slide Time: 03:23)

So, I need an infection or cascade model. And what is this infection or cascade model

how do I code it and how does it work. So, that we are going to implement in our next

programming screencast. And we are going to look at a cascading model which is known

as the independent cascade model, independent cascade model. And this independent

cascade model is actually very very similar to the SIR model we discussed in the chapter

epidemics, very very similar to the SIR model.

Do you remember what was SIR model? There were 3 kind of nodes in the network

susceptible, infected and recovered and nodes used to pass from this chamber to this

chamber infected chamber and then to the recovered chamber. So, our model is very

similar to the sir model, the node exactly similar. Let us look at what is independent

cascade model now.

(Refer Slide Time: 04:25)

Assume that this is a network given to you here. So, I give you a network here and I want

to say that let say the seed nodes in this network are 12 and 10. So, the infection in this

network starts from these 2 nodes 12 and 10. And now I want you to implement

independent cascade model on this network, how will you do that? So, at time equals to

0, these 2 nodes are infected, nodes 12 and 10 are infected. How the modal proceeds is

very simple. What is going to happen at the next time stamp is this node 12 is going to

look at all of its neighbors.

So, node 1, node 14 and node 15 and it will infect each of its neighbors independently

with a probability p. And let us say p is 0.5, we can set the value of 2 p to be anything.

So, it infects each of its nodes, each of its neighbors with the probability of p and we

have done it previously right. How can we simulate this? We can actually toss a coin for

this edge if we get an head then 12 infects 1 else node toss a coin for this edges well and

toss a coin for this edges well. That is that was how we can implement these and in terms

of programming also it is very simple.

So, what we can do is we can generate a random number from 0 to 1 and then we look

whether this random number is greater than 0.5 or node. So, what is the probability that

this random number is greater than 0.5, it is nothing, but 0.5. So, this is how we can do it

in our coding. So, we are we generate a random number from 0 to 1 and if the number is

greater than 0.5 we will in fact, the corresponding node. Ok that apart.

So, a time iteration 1, this node 12 over here we try to infect each of its neighbors with

the probability p and let us say it succeeds in infecting this node 14 over here. And then

node 10 is also doing the same, it will look at all of its neighbors and infect them with

the probability p.

So, it again it has 3 neighbors and let us say it succeeds in infecting the node 5 over here.

So, a time iteration 1 this node 14 over here and this node 5 over here gets infected ok.

What’s now going to happen in next iteration is node 12 and node 10 have done their job.

So, they were given 1 chance to infect their neighbors and their chance is now over. So,

these 2 nodes it remain infected they are infected, but they do not get any further chance

of infection.

So, it is very similar to a case where in a school some students are getting infected. So,

initially at the first way the students who are infected, they infect the people around, but

during the second day at second day at second day they do not get any chance to infect

anybody. So, nodes 12 and 10; now we will not infect anybody and the just infected

nodes, which are the just infected nodes, so it is time iteration 1. Just infected nodes are

14 and 5.

So, 14 and 5 now gets a chance get a chance to infect their neighbors. So, this node 14

over here looks at all of its neighbors and tries to infect each of them with a probability p

except for the node 12 because, node 12 is already infected. So, we cannot infect it

further. So, for remaining neighbors which are 3 in number, so for each of these

neighbors it sees whether it can infect them or node and let us say node 14 succeeds in

infecting this node 13 over here.

So, time iteration 1 node 13 gets infected. And in the same iteration this node 5 over here

also tries to infect its remaining neighbors. So, there are 5 neighbors and let us say it

succeeds in infecting this neighbor 7. So, at time iteration 2, so a time iteration 2 this

node 13 over here and this node 7 over here gets infected and again in the next iteration

these node 7 and 13 look at their neighbors and try infecting them and what will happen

then, let us say that this node 13 is unable to infect anybody and this node seven over

here is also unable to infect anybody right.

So, nobody gets infected in iteration 3. What will happen next? So, these will be just now

infected nodes which were infecting their neighbors. 13 and 7 have also got their due

chance of infecting their neighbors, but they could not infect anybody. So, now, there is

nobody in the network which could look at their neighbors and infect them and hence the

process stops.

So, do you see where did the process stop? The process stopped when we reach a

iteration, we reach an iteration where nobody is infected. And in this particular case you

saw that we started with these nodes 12 and 10 over here which were initially infected

and the size of the cascade is 6. So, the influential power of node is set 12 and 10, we can

say 6. So, this is how an independent cascade model is going to work. Let me revise it

quickly.

(Refer Slide Time: 09:44)

So, what is happening is initially there are certain nodes which are infected let us say

these 2 nodes are infected. In the next iteration these nodes will look at their neighbors.

So, this can be a possible case here right. So, these nodes will look at their neighbors and

infect each of them with the probability p and let us say that these 3 neighbors got

infected.

So, they might have other neighbors as well and let us see out of all these neighbors only

these 3 are the ones which got infected. Then these three nodes over here will repeat the

process and in fact, all of their neighbors with probability p and they might succeed in

infecting some people and let us say here for more people go to infected. And let us see

in the next iteration nobody go to infected. So, in the next iteration nobody go to

infected. So, what will happen is your process will stop here. So, this is what is known as

an independent cascade model.

And why is it called an independent cascade model is actually very clear whether this

edge over here get passes the infection or node is independent of whether this says over

here passes the infection or not. So, hence it is known as the independent cascade model.

And next we look at how can we code this independent cascade model. So, let us now

see how we can implement this independent cascade model. So, before writing the code

for independent cascade model let us look at the structure of the code.

(Refer Slide Time: 11:07)

So, we are going to see how can we implement independent cascade model, independent

cascade model. And what we are going to do is we know that we know the entire

procedure right, we know that there is a set of nodes which are our seed nodes, which are

our initially infected nodes. And the seed nodes are then going to look around all of their

neighbors and ending up infecting few of its neighbors and ok.

So, this is a C and they end up infecting few of their neighbors and then all of these

neighbors are going to look at their neighbors and then they are going to infect few of

their neighbors. So, these are the neighbors which are not already infected. So, some new

nodes over here are infected and this process will stop as soon as we reach an iteration

where no new node is infected. So, how can we write a code for this? While writing a

code for this we are going to use 3 lists.

(Refer Slide Time: 12:06)

So, let me tell you one list is obviously the seed nodes, which holds which of the nodes

are initially infected, so this list is seen. Another list which we will be considering is let

recall it just infected. So, another list is just infected. What does this list hold is, this list

holds the moves which are most recently infected in any iteration.

So, so this particular list it iteration dependent. If you look at this list seed it is always

going to be the same. So, these are the nodes which were initially infected. It is just

infected list it is going to change with time. So, in iteration 1, when C is going to infect

certain nodes then this list will change and whichever nodes will be infected at the first

iteration will come in just infected. So, let us say again I will make the same diagram the

seed is here and then this let us say there are 3 nodes in seed set and these 3 nodes they

end up infecting some more loads. So, these are some more nodes which got infected

life. So, at this particular iteration this will be my set of just infected nodes.

So, at this iteration this becomes the least just infected right and then we will also be

using another list which is infected. And this list holds all the nodes over overall the

process throughout the process till now whichever nodes are infected comes in this

infected list. So, you see what is what is infected currently. So, this entire these all the

nodes are infected right.

So, this is my list infected, this is my list infected. What will happen in the next iteration?

What will happen over next iteration is let us say so, these whole nodes over here they

might end up infecting some more nodes. So, let us say in iteration 2 these are the nodes

which are infected. Now what is just infected? So, these nodes over here these nodes are

my just infected and then this entire set of nodes is my infected right.

So, we will be using these 3 lists and now can you tell me when will this process end?

This process will end at an iteration when this list just infected becomes empty. So, as

soon as this just infected becomes empty will break the loop and come out. So, after this

particular iteration over here, let us say that in the next iteration none of the nodes gets

infected. So, just infected fact, it is empty here and the process will come to an end ok.

(Refer Slide Time: 15:01)

So, how we are going to implement it let us see. To implement it as we saw before we

have 3 lists. So, 1 is corresponding to seed, one are the nodes which are just infected and

at the end we have all the nodes which are infected. So, this particular thing we are going

to return at the end. These are the overall nodes which are infected throughout the

process. And the size of this list infected is what we called the influential power of this

set seed.

We will be starting our infection with seed and at the end certain nodes will be infected.

And the size of these infected nodes is nothing but the influential power over seed ok.

And this is what we are going to return. Now what we will be doing is to implement our

independent cascade model in the very beginning, so let me put a start over here. So,

here we start, after starting I sit the value of just infected to be seed right, when nothing

has happened, so these are the seed nodes which are just infected and which have to

create my further infections and the value of infected is also equal to seed because, when

nothing has happened these are only the seed nodes which are infected.

What will happen next is we will enter a loop and what will happen in this loop is these

all nodes which are in just infected. So, we will look at this just infected set and let us

say ok. So, before doing this a small step and it take a temporary list. And let me call it

tmp and you will understand why I am taking this empty list over here. So, this is my

tmp. What will happen is I will take all the nodes which are in just infected. So, let us say

that these are all the nodes which are in just infected and then all these nodes will look at

their neighbors right, all the nodes will look at their neighbors. And then they will infect

each of their neighbors with a probability of p.

So, you can do this by how do you infect them with a probability p, we have discussed it

earlier. We are going to generate a random number from 0 to 1, a real number and if the

number turns out to be greater than p, if r is greater than p we are going to insert the node

over here else node right. So, when p (Refer Time: 17:32) 0.5 will generate a number

from 0 to 1 and if this number is greater than 0.5 it means that this node over here should

be infected ok.

While infecting it, but few things we have to take care is, first of all this node should not

already be infected right. So, we put the desired loops here. Overall what we have to do

at this step is we have to look at this list just infected and then for each of its neighbors

over here for each of the neighbors, so first we take this node over here and then for each

of its neighbor we generate this random numbers and then we see whether this node over

here should be infected or not.

And if this node is not already infected that is this node should not belong to a set

infected, then we are going to append it to tmp. So, let us say that let me write it down, if

a particular neighbor, so let me call this node over here as x, if x node in infected right.

So what I am going to do is tmp dot append x right and I am going to do this for each of

the nodes over here. So, first I will do it for this x then I will do it for this x, then i will

do it for this x, this x and so on.

And one thing you might note here now it seems it is a graph, it is not a tree like

structure what can happen is let us say this node over here it is the neighbor of both the

node, it is the neighbor of this node as well as this node. And let us say when we came

here this node over here got infected, so we have appended it to tmp right.

So, when we were looking at the neighbors of this node, we saw whether it should be

infected and then we see that yes this node should be infected it is not already infected.

So, we append it to a list tmp, but then when this node is looking at its neighbors and it

might also see that it should be infected right, it is not till now it is not infected because,

it is note in this list infected it is in list (Refer Time: 19:41). So, we might again

appended to temp. So, to avoid this, so that sort of duplication what we can do it if x

noting infected and x noting tmp. This is not a very important step, but just to avoid

duplication we can write it here.

So, first of all this node over here, it should not be previously infected, second it shouldnt

be in tmp. In that case we append x to tmp. So, we get this list tmp at the end. What is

this list tmp telling us? Tmp is telling us that in the current iteration these are the nodes

which got infected. So, what we do next is we go to our set of nodes in tmp, which

should be infected next.

So, we will simply for all the nodes in tmp we set our list infected right. So, these all

node should be infected. Infected becomes infected union tmp right. So, these all nodes

become infected first of all then. Secondly, you notice that now my set of just infected

should change right. So, previously my just infected were the node which were infected

in that iteration, next what should become just infected now? Just infected should

become equal to tmp right and then we jump back.

So, after doing both of these steps we jumped back here ok. So, you see what is

happening, we start from here, we start from here and then we set just infected to be seen

infected to be seen, we take a temporary list. For initially just infected is seed and then

we seeded which node should get infected in the current iteration. We append them to the

list infected and then we said just infected equals to tmp, then we come here. Then for all

the nodes which were infected in the previous iteration we keep repeating this process

ok. Now it has become an infinite loop right, it will keep running keep running keep

running.

So, one should this process come to an end when this list just infected becomes empty.

So, we can put as small terminating condition over here. Over here we can put

terminating condition that if your list just infected is 9, it has no element than you break

right. So, this is the terminating condition over here. So, this is my entire function for

implementing independent cascade model. And at the end we can return the list infected

which holds all the nodes which are infected during this entire process ok.

(Refer Slide Time: 22:27)

So, now we are going to write a code for login independent cascade model. So, already

made a file here and we are going to use the same graph which we have used previously.

So, some part of the code I have written very basic part. And next let us look at how can

we implement independent cascade model here. So, you should have some seed in this

network.

So, we can randomly define some seed and let us say my seed is node 3 and let us say

node 8. And next what I want to do is, I want to call my independent a function

independent cascade I see which runs the independent cascade model on this graph G

taking as input the seed c and gives me as output a list. And this is the list of the people

who are infected finally, at the end.

So, that is list 1 ok. How do we implement it? So, define independent cascade G comma

seed ok. What we are going to do is, we have to so, we have 1 list seed, another list we

know we had a list called just infected and which is nothing which is initially going to be

the same as the seed node, let us call it as here. It is same as the seed node s and we

know that the people who are infected currently are also nothing, but the seed s right

initially, both of these nodes have the same value as c. And then we have a loop while 1,

while 1 what are we going to do, we know that what is the terminating condition for this

loop. So, there should be some persons who are just infected. If nobody is just infected

we should break.

So, if length of just infected is equals to 0, we are going to what we will do, we will

return our list infected that is all the infected people right, that is sufficient we will return

ok. That is the end of this function otherwise, what we have to do? We have to find out

the new people who will get infected. So, we have a temporary array tmp for that and

how do we find these people? We look at everybody for each in this list just infected; we

are going to look at their neighbors.

So, for each 1 in G dot neighbors of just infected people what are we going to do? Now,

so here is an edge from 1 person here to 1 person here and we have to do. We have to see

whether the person will get infected or not that depends upon the probability of infection

right. And we have seen before how do we model the probability of infection was with

the help of random variable.

So, we import random here and what do we do is we generate a random number r,

random real number r from 0 to 1 and what do we do next is if, so when is the infection

going to occur when r is less than 0.5 let us say the probability of infection is 0.5 and

what is the other condition, this node each 1 should not be previously infected. Each 1

not in infected and as we discussed previously to avoid any duplication in tmp, 1 not

getting infected by the 2 nodes which are in just infected we do for each 1 node in tmp

also, in tmp we do not need any duplication. So, what we do here, if this happens is the

tmp dot append each one.

(Refer Slide Time: 26:59)

So, this each 1 is the node which is going to be infected in this iteration ok. So, we have

found out all the nodes which get infected in the current iteration then, what we have to

do for each in tmp. These nodes which got infected just now, what are we going to do

infected dot append. So, these nodes are now infected. So, we append them to this list

infected, infected dot append each and our list just infected now get tends to tmp and that

is done. So, this is a very simple code and right. So, we want to see how does this code

run.

(Refer Slide Time: 27:54)

So, for that what I am going to do is let us print the value of just infected at every

iteration and see how this is going. So, we print both the nodes, let us say we print just

infected first and then let us print infected the total notes infected and at the beginning let

us print s right ok, s just infected, infected and here before returning infected, here also

let us print infected. Actually there is no need for these leave it as it is ok. Let us run this

code and see ok.

(Refer Slide Time: 28:42)

We see a problem here just infected is a list here right. So, we have done here, for each in

G dot neighbors it should be each here right, for each in just infected for each 1 in G dot

neighbors each right. (Refer Time: 29:27).

And then you can see here initially 3 and 8 were seed nodes 3 and 8 were the seed nodes,

so just infected are also 3 and 8 and infected and 3 and 8 then one of these infected 5 and

5 also became infected. Then 5 infected 3 more nodes 4, 7 and 9 which got I did and 4, 7,

9 could not infect anybody. And hence, these were the finally infected node and the

process finally stopped.

