
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

How to go Viral on Web
Lecture - 163

Coding K-Shell Decomposition

(Refer Slide Time: 00:05)

In the next programming screen cast we are going to implement facial Decomposition.

So, I hope you remember you remember what was the algorithm for facial

decomposition. First of all we take bucket 1 and then after taking bucket 1 we start

removing the nodes having degree 1.

So, we see that this node over here these nodes have degree 1, this node has degree 2. So,

these 3 nodes have degree 1, so what we are going to do, we are going to remove these 3

nodes and put them in bucket 1. So, let me number these nodes also. So, what I am going

to do is let me number these nodes first ok. So, we are going to take bucket 1 and in

bucket 1 will recursively put the nodes who have degree 1.

So, first of all nodes 14, 12 and 11 go to bucket 1 because, they have degree 1 and then

we delete these nodes from this network. So, we cut node 14, 12 and 11 from this

network and we put them. And next again we see that there are degree 1 in this network

and then we recursively remove these nodes also from the network and put them in

bucket 1; similarly, we determine bucket 2 and bucket 3 in this network. So, bucket 2

will comprise of the nodes 1, 4 and 5 and bucket 3 will comprise of the nodes 5, 6, 8, 9, 3

and 7.

So, how do we write a code for this? So, before writing the code here I am going to tell

you the structure of the code, so that it will be easy for you. Decode is a little bit

involved, so it is important to understand its structure before writing the piece of code

ok. So, let us take this network and we do not even need this network ok.

(Refer Slide Time: 02:15)

So, what we will be doing is let us say that here a good start. So, this is starting. What we

are going to do is we know that we have to recursively remove the nodes having degree 1

or less than 1 till there are no degree 1 nodes in the network. Next we have to recursively

remove the nodes having degree less than or equal to 2 from the network till there are no

nodes having degree less than or equal to 2 in the network so on and so forth.

So, in the beginning I am going to take some variables. So, I have a first of all I will take

a list here and I name this list as buckets. What is this list buckets is? This list buckets is

going to be a lists of lists. So, it will be further consisting of many lists and this will be

the list corresponding to my bucket 1. This will be my list corresponding to bucket 2,

bucket 1 here means bucket corresponding to pour 1, bucket corresponding to pour 2,

and bucket corresponding to pour 3.

So, this is my array buckets and the aim of our code is to fill this array buckets. And then

I am going to take a variable let us say i t which is initially 1. What this variable tells

me? This variable tells me at a particular time in a code which degree nodes I am

removing. So, if the value of i t is k let us say it means that I am removing the nodes

having degree less than or equals to k.

So, that is my variable i t. And then we have a array or we have a list tmp. What this list

tmp is going to hold is, so we are going to determine 1 of bucket at a time. So, I might be

filling this bucket at a particular time, I might be filling this bucket or this bucket. So, t is

going to temporarily hold this bucket. So, initially the value of tmp is going to be

initially, so tmp will start with empty and then whatever values will put in tmp will be

the values in B1.

So, we will fill tmp, we will keep filling tmp and a point will come where all the nodes

have been degree less than or equals to 1 will be removed from this network. At that time

we are going to close tmp and we are saying that we will say that this tmp is nothing but

bucket 1 and we will append tmp here, it will be further clear ok.

So, what we are going to do is we have a start here. After start we are going to check a

condition. So, initially we have i t equals to 1 and tmp is nothing, but empty ok. Next

what we are going to do? We are going to check a condition and what is this condition?

This condition is whether there are nodes of degree greater than sorry, whether there are

nodes of degree less than or equal to i t; in this network whether, there are such nodes in

the network and the answer can be yes or no.

So, let us say here the answer is yes and here the answer is no. So, if the answer is yes

what we are going to do? If the answer is yes it means that, still there are nodes of degree

less than or equals to i t in this network. So, we have to prune those nodes from the

network. So, what we will be doing is what we will do is find those nodes.

So, we find these nodes which have the degree less than or equals to i t and what do we

do? We remove these nodes from our network. So, we remove these nodes from our

network and we append these nodes in our array tmp, in our list tmp which is the

currently being filled bucket.

So, we append these nodes in tmp. That is what we do and after doing this we return

back to here. So, when the value of it was 1 here what do you do, you find the nodes

which have degree less than or equals to 1, you delete those nodes from the network and

put them in your bucket and after that you again see whether you; I am very sorry, you

come here you come here ok.

So after that, after removing these nodes having degree 1, you again see whether still

there are nodes having degree less than or equal to 1 in your network and again if the

answer is yes you remove those nodes also and you keep doing this till there are no

nodes having degree less than or equals to 1 in the network. So, if the answer is no what

will you do? It says that your bucket is over.

The bucket which you are currently filling is over, so what you do? At this point if the

answer is no you append your tmp to your buckets. So, buckets dot append tmp that is

your current bucket is full, so you do this and what else you do. Now we have to start

filling a new bucket. So, we set back tmp to empty and also we have removed all the

nodes having degree it. Now we have to start removing the nodes having degree it plus 1.

And after doing this we go back to these things.

So, I hope the code structure is clear now. So, this loop will keep running. So, it will

check for the value of i t equals less than or equal i t will be 1. So, we check whether

there are nodes of degree less than or equals to 1. We keep doing this, we keep coming

back, keep removing nodes having degree less than or equals to 1 till there are no such

nodes in the network. And when there are no such nodes in the network we change it to 2

and then we check the nodes having degree less than or equals to 2, we will keep doing

it.

Now do you see this code will keep running forever, there is some problem with this

code. At one time all the nodes from this network will be removed and that is the time

where we should stop. So, what we are actually going to do is before coming to this step,

before coming to this step and before checking whether there are such nodes in the

network we can actually put a small condition here.

So, before doing this we can actually put a small condition there and this condition will

check whether my network is empty, whether my network has become empty. Whether I

have removed all the nodes from this network and if I have removed all the nodes from

this network what I will do? I will simply append my temp to buckets.

So, see what is going to happen is, let us say that 5 is the maximum degree in this

network and you are removing the nodes having degrees less than or equals to 5. And

you remove these networks and at a particular time when you remove a node the network

becomes empty, but your tmp will be holding the last nodes present, last nodes which

you have removed from this network are still present in tmp, So, that bucket we still have

to append.

So, at this time we will append tmp to buckets buckets dot append temp and you break.

Now we will be implementing this and I am sure this will be further clear when you look

at the code, you might want to keep this in front of you while writing the code which will

make your process easier ok. So, next we are going to write the next we are going to see

the code for facial decomposition and please note we need a little bit more complicated

network.

(Refer Slide Time: 10:05)

So, for doing facial decomposition and for all the further codes we will be going to use

this particular network which is the slightly a little bit complicated. So, here if you look

at the nodes present in nodes which will be removed in the bucket 1, so in bucket 1 these

are the nodes which should be removed. So, first you remove this node 2 and 2 and all

these nodes 4, 8, 6, 7, 9 and 17 over here and 3 over here and in the next iteration you

will remove one and five as well and then your bucket 1 will be over.

And then in your bucket 2 will be going to remove these nodes 11 over here and 12 over

here. And then once you remove 11, you will have to remove this node 10 over here also.

So, these nodes should be in your bucket 2 and finally, your bucket 3 should comprise of

these 4 nodes over here. So, we will be using this network for our programming screen

casts. So, now, we are going to write the code for facial decomposition.

(Refer Slide Time: 11:13)

So, as usual we import network x as nx and we import matplotlib pyplot as plt. What do

we do next is we create a graph G equals to nx graph and we add some edges to this

graph. So, this graph which I am going to take is the same graph which we have seen

previously in this video. So, the graph which I am going to take is this. You can actually

verify and see that it is the same graph. So, we can also draw it and see nx draw G and

then plt dot show and then we can execute and see it.

(Refer Slide Time: 12:02)

So, this is the network over here and we have to look at various shells in this network ok.

What we do? Next is we have already discussed what we are going to do is first of all we

are going to create a copy of this network H equals to G dot copy and whatever we are

going to do? We are going to do it with hH and then we take our variable iteration

corresponding to the degree which is initially 1. And then we have a list tmp

corresponding to the bucket which we are filling currently.

So, it is corresponding to the let me write it down here. It is for the bucket being filled

currently ok. And then we have our overall added bucket which is going to be a list of

lists and each list here is a bucket ok. Next what we are going to do is we are going to

run a while loop while 1.

So, this loop will keep running till a terminating condition comes and Now, we put a

check condition whether there are nodes of degree less than or equals to i t in this

network. So, for that I use a function and let us call this function as check existence. So,

flag equals to check existence and what do I pass here a graph h and the degree. And let

us define this function first here. Define check existence, where I have passed the

network H and the particular degree and how do I define it? It is very simple.

So, what do I do? Initially I said f equals to 0 which means that f is going to be 0 till the

end of this function if in the case there is no node of degree less than or equals to d in the

network right. And then what we are going to do for each in G dot nodes we check each

and every node in this network and as soon as we find a node in this network whose

degree is less than or equals to d, it means that still there is a node having degree less

than or equals to d in the network immediately we set f to 1 and break this loop right and

then we return f.

So, this f is going to be 0 till the end of this code if there is no node of degree less than

equals to d and it is 1 if there is even 1 node of degree less than or equals to d ok.

(Refer Slide Time: 14:53)

So, flag equals to check existence h comma it. And next what we have seen, flag can be 0

or 1. If flag is 0, it means that we have looked at all the nodes having degree less than or

equals to i t, even recursively we have seen we have pruned again and again and there is

no node of degree less than or equals to i t. In that case what we have to do? We have to

mark our bucket as complete.

So, if flag is equals to 0, what do we do? We move on to the next degree, we set i t equals

to i t plus 1 and we say that the current bucket is complete. So, we append our temp to

buckets, mark it as complete and now we start with a fresh bucket.

So, this is nothing, but start with a fresh bucket right ok. And in another case if flag was

1, what we are going to do? If flag is one it means that we have to keep pruning the

nodes having degree less than or equals to i t. In that case first of all we should find out

such nodes in the current network we have to find the nodes which are having degree

less than or equal to it. Let us call a function for that and let us name this function as find

and so in the graph H finally, nodes having degree less than or equals to i t and we can

quickly write code for this function define find h comma i t and how do I define it.

(Refer Slide Time: 16:26)

So, initially this set is empty and it is simple. For each in H both nodes if H dot degree of

each, if H dot degree of H is less than or equals to i t what we are going to do is set 1 dot

append each and then return set 1 right. So, we have find out we have found out all the

nodes having degree less than or equals to i t. Next we have to prune these nodes on the

network and add them to our bucket. So, what do we do? Prune these nodes from our

network and add them to the bucket.

(Refer Slide Time: 17:23)

So, for each in node underscores set what we are going to do is H dot remove node each

H, we have removed it from H and we have to put it in our current bucket which is being

filled which is nothing, but tmp tmp dot append each right. In this case we will keep

pruning the nodes and the last part of the code is a terminating condition. So, if by

pruning these nodes our network it becomes empty what we have to do?

So, if network becomes empty is if H dot number of nodes if it becomes equals to 0 what

we have to do? What we have to mark the current bucket as filled. So, buckets dot

append tmp and then break ok. And now we want to see whether our buckets are correct

or not. So, for that what we can do is we can simply print buckets. It tells us the different

buckets in our network.

(Refer Slide Time: 18:44)

So, let us execute this code and see. An adder at line number 27. Check underscore

existence H comma it ok. If it was 0 for each in G dot nodes, so if I do not think this

(Refer Time: 19:20) ok. Some error let us try to figure it out, some very small error. So, it

what is it here? It is a number right a particular degree d for each in let us use some other

variable here d1 ok.

(Refer Slide Time: 20:11)

See a mistake here; here we have used G dot nodes, so here we have to use H dot nodes

because, if we are using G dot nodes here we might here be talking about a node which is

not there in H, H has less nodes than G So, it should be H dot nodes here and let us

execute it ok.

(Refer Slide Time: 20:32)

So, you see it here, your 1 core is the first bucket is from 1, 2, 3, 4, 6, 7, 8, 9, 17, second

is this and third is this and that is the result.

So, we have implemented facial decomposition, if you want you can also color these

nodes with different colors to see the differentials and so on.

