
Social Networks
Prof. S. R. S. Iyengar

Prof. Anamika Chhabra
Department of Computer Science

Indian Institute of Technology, Ropar

Rich Get Richer Phenomenon
Lecture - 125

Forced Versus Random Removal of Nodes (Attack Survivability)

In this video we are going to implement Forced Versus Random Failure of Nodes which

is also called Attack Survivability. We are going to take a network and we will be

removing nodes from this network and we will observe the effect of removal of nodes

from the network. We will be using two strategies to remove the nodes. In the first

strategy we will remove the nodes randomly, and in the second strategy we will remove

the nodes which are highly connected.

We will observe that when we remove the nodes which are highly connected, it requires

very less iterations for the graph to become disconnected. This sort of information can be

used by some agent for example, if he has the information of who is more connected and

who is not. He, if in case he wants to damage the network for example, by spreading

some sort of virus, he will not be attacking a random nodes rather, he will attack the

nodes that are more connected, so that the network becomes infected to a greater extent.

So, there is one thing we will observe and implement and we will also see one more

thing in the context of the kinds of graphs. For example, the first thing that we checked

on real world networks, real world networks sort of follow preferential attachment where

there are there is existence of hubs in the network which are responsible for connection

of most part of the network. So, when you remove then the graph becomes, becomes

disconnected.

We are going to observe the same thing that is the removal of nodes on random networks

as well. And we will observe that it does not make much difference on a random network

when we remove the nodes randomly as compared to when we remove the nodes

selectively; that is we remove the nodes which are having high degree.

That is because there is there are no hubs in random networks which are responsible for

the connection of most part of the network; so the number of iterations that it will require

in the first case that is random removal and the second case that is selective removal. In

the case of random networks will not make much difference. We are going to implement

that and we will observe the number iterations that are required. Let us get started with

implementation.

(Refer Slide Time: 02:23)

Let me import the packages first, we might also need random package, let us define our

main. I already have downloaded a real world network that is email network and that is

an edge list format, we will be making use of that. This network is basically undirected.

So, there is link from a node a to node b, if they exchanged any email with each other.

So, that sort of network is what we will be using.

Let me read that network n x dot read edge list email dot t x t. Ok I have kept this in the

same folder where I have get this file and then let me print some details about this

network. So, I will write n x dot info, so that I get the basic statistics about the graph. Let

me call this function let us now check whether the graph has been read or not it has been

converted into graph object or not.

(Refer Slide Time: 03:46)

So, this is the basic statistics about the graph. It has more than 1000 nodes and more than

5000 edges and the average degree is there. So, let us get back here. So, we are going to

remove the nodes from this network in 2 ways: let me print the first page random

removal ok. We are going to randomly remove the nodes. Let me create a copy of the

given graph because, we are going to remove nodes in 2 ways.

So, we will work on both the copies. So, this is the first copy G1 from which we will

remove the nodes randomly. First let us check whether the graph is connected or not, is

G1 connected ok, I will write n x dot is connected G1 ok. We have to keep a track of how

many nodes have to be removed to make the graph disconnected when we randomly

remove.

 So let us create variable nodes removed when we randomly removed initialise to 0. Now

while the network becomes disconnected we have to keep removing the nodes. So, we

will write n x dot is connected G1, we have to keep removing. So, we should better

create a function for removing a node I create that function in a while. I will write G1 is

equal to remove a random node.

So, this function I will just create, I am going to pass the graph here ok. And as you keep

removing we will increment the counter for nodes remove random plus is equal to one

and in every iteration we will keep checking whether graph is connected or not we will

actually print that or let me just copy paste this sorry ok.

So, we at every iteration we are going to check whether graph is disconnected or not and

in the end when we are done we will come out this loop and the graph becomes

disconnected and at that point of time will print the number of nodes that needed to be

removed to make the graph disconnected. Randomly chosen we will print nodes remove

random ok. We will lastly used to press an enter here, as well as here ok. We are going to

remove the in the second strategy, we are going to remove the nodes selectively based on

the degree.

(Refer Slide Time: 07:06)

So, let me just copy paste this entire thing and I will just made changes into that. So, in

the second strategy, we are removing selectively, selective removal we will create

another copy G2 of the graph. We will see whether G2 is connected or not. So, I am just

making changes there. Nodes removed when selective removal was there. Let me write

selectively, selective and again G2 and here also G2 and nodes remove the selective is

G2 connected.

Actually should I have written G only here, anyway nodes removed when random when

selectively chosen. Nodes removed selectively right, I think there is a mistake here. Ok

the only thing left is now to create this function that is 2, these 2 functions we have very

minute, we have to remove the node selectively ok. So, remove node remove high degree

node may be ok. So, we are yet to create these 2 functions, the first function is remove a

random node and the second function is remove a high degree node.

Let us create these functions ok. This function we have to create. So, out of all the nodes

we have to choose 1 node randomly and we have to remove that. Let me get a list of all

the nodes. Nodes is equal to G. Nodes, I have to randomly remove a node out of this

while use random or choice out of nodes and we have to remove it. So, I will write G.

remove node, which node to be removed or has to be removed and at this point we have

remove the nodes from the graph and we will return it ok. Let us make a generalized just

keep G here.

So, we pass the G and we return the G. So, whichever graph was input 1 more was

removed and it was returned. So, that function is being used here, everything seems fine,

this syntax and return type, everything is fine. Next thing is to create this function

remove a high degree node. Let us get this function now ok. What we have to do here?

We have to see the degrees of the nodes and we have to sort them accordingly and the

node which has highest degree will be removed.

How do we do this? Firstly, let us get dictionary having the degrees of all the nodes. So,

G dot degree ok, now, now out of this dictionary we have to get a sorted list of the key

value pairs right. So, what we can do is a these are basically not nodes these are edges

because, when we sort a dictionary we get list of tuples where every tuple is every tuple

is actually key and value where key is node and the value is degree, so it make sense to

call it nodes.

 So, what we can do is we can use sorted function and we will pass degree degrees

degree might be key or because, degree is the name of the function, so let us call it

degrees. Degrees dot items key is equal to lambda the same old method that we used to

get a sorted dictionary. And then X, we want to sort based on the value and we want to

sort in descending order reverse is equal to true, this should work I am sorry.

(Refer Slide Time: 11:32)

So, what is nodes? Nodes basically is list of tuples where the tuple (Refer Time: 11:41)

percent is here where the tuple is having 2 things node and the yes node and the degree

right and it is sorted. So, the first node will be having the highest degree and that is what

we should remove.

So, I will write G dot remove node, which node we have to remove out of the nodes list

we have to take the first entry that be a tuple and out of that tuple we have to take the

first value that is going to be the node that has to be removed right. So now, let us return

G ok. This should work it is it no mistake. So, we are calling that function here G2 is

equal to remove a high degree node and we are incrementing the counter and we are

connecting, that is all. It should work let us check let us check.

(Refer Slide Time: 12:43)

So, this is a basic statistics as we saw earlier too, I am pressing enter ok. So, in this case

we are randomly removing and we have to remove only 1 node to make the graph

disconnected. Now I am pressing enter and we are now selectively removing and again

we need here only one node to make a graph disconnected.

So, by chance in this case as you see whatever node we removed randomly that was by

chance a high degree node that is that is how the graph becomes disconnected. Let me

run this function again and let me see again it is taking one it is surprising.

(Refer Slide Time: 13:26)

 And again let me run this again.

(Refer Slide Time: 13:27)

So, in this case you see randomly removal took 16 iterations and the selective removal

took only 1.

(Refer Slide Time: 13:37)

Let me run this again in random removal, it took 13 and in then I in the selective one it

took 1, I am just going to run it last time. So, again in randomly it took 17 and in

selective it took 1. You can just keep checking that ok. So, that is one thing. In case of

real world networks this sort of thing happens. Now, we are going to check the same

thing on a random network ok.

(Refer Slide Time: 14:10)

So, let me let me write here that the all this was for all this was for real world network or

a network which basically follows power law distribution and preferential attachment,

real world networks right. This does not look good, let me write this does not, let me

write this. So, this was for real world networks. This looks very bad anyway, let us go

ahead.

(Refer Slide Time: 14:49)

So, next we are going to do the same things for a random for a random network. Now

how can we create a random network? Ok in the previous videos we created an Erdos

Renyi network. We can use that code to create a network and we can also use a function

from network x where we have a function where we pass the values of n and p and we

get a random network.

So, in order to tell you the function, I will use that function only over here. Let me call

the graph H I wrote n x dot Erdos Renyi network. So, this is a I am sorry, graph. So, this

is the name of the function and let me pass some n, the total number of nodes and the

value of t the probability. This should give us random network. Let me print the basic

information of H.

After that we want to remove the nodes as the same way we did earlier. Let me copy

paste the entire code here and we will make changes in to that to this right. So, I am just

pasting the entire thing here, random network starting here only. Raw input and then

random removal l the graph name is H, what to write to ok. We are making copy of H

and then we are checking whether H1 is connected or not and nodes removed is find and

then n x is this connected H, (Refer Time: 16:47) I could have actually use here replace

like replace function here, it is ok. So, everything else remains the same, I am just

changing the graph here ok.

(Refer Slide Time: 17:00)

I actually should have use replace method, but I think we are done we will almost done

now, check it last one alright. So, I think we have good to go. We have just taken random

network now and we are applying random removal as well as selective remove in this

case. And we are continuing the number of iterations that are required in both the cases

ok.

(Refer Slide Time: 17:39)

Since, we have already observed the behaviour on a real world network, let me comment

that part. So, that we are able to concentrate on only real world network.

(Refer Slide Time: 17:45)

So, I am commenting this part up to which point this point ok.

(Refer Slide Time: 17:50)

So, let us check our code. So, this is for random network we have 1000 nodes and these

many edges. I am pressing enter, random removal is taking place.

(Refer Slide Time: 18:01)

So, you see this is taking a lot of time it is taking a (Refer Time: 18:07) number of time.

It is actually going on and on as you can see it is going on and on still going on ok. So,

the number of nodes we had to remove from a random network when we randomly

choose them was 985. So, (Refer Time: 18:28) 985.

I am pressing enter here. Now we are selectively removing that is we are choosing the

nodes with high degree and then we are removing them. It is again going on and on

surprisingly it is going on and on; let us going on and on 928 as you can see. So, in the

case of random network when we randomly it remove the nodes, it took a some 938

nodes to make the graph disconnected, and in case when we remove the nodes based on

their degrees that is we remove the high degree nodes and every iteration, it again took as

928 nodes to make the graph disconnected.

Now that is happening because, there are no hubs in random networks which are

connecting a lot of nodes. So, all the nodes are sort of equally likely because, equally

likely in the sense of the number of nodes that they are connected to. So, there is no

preference because, the edges were added randomly and there is no preference towards

addition of nodes to some particular nodes in this.

So, that is a sort of difference that we observe in case of real world networks as well as

random networks, because real world networks are not random and they actually exhibit

some sort of preference towards the nodes.

