
Social Networks
Prof. S. R. S. Iyengar

Prof. Anamika Chhabra
Department of Computer Science

Indian Institute of Technology, Ropar

Rich Get Richer Phenomenon
Lecture - 124

Implementing a Random Graph (Erdos- Renyi Model)-2

In the previous video we discussed Erdos Renyi model to create Random networks. We

also discussed the sequence of steps that we will be following for the implementation. In

this video we will do the implementation.

(Refer Slide Time: 00:21)

I have pasted the sequence of steps that we discussed in the previous video over here and

we will start implementing them. To start with let me import the packages that we are

going to need. We will be needing network x, I am sorry we need to display the graph, so

we will need matplotlib. We also need random package ok. Let us start the main. Let us

take these steps 1 by 1. So, we have to take the value of n from the user and also we have

to take the value of p that is probability from the user.

We can use the function draw input for that. So, we can write n is equal to draw input

returns in string format. So, we need to convert it to int. Similarly, we will take the value

of probability ok. The next step is to create an empty graph and add n nodes to it. Will

create an empty graph, we have to now add nodes to it n nodes to it, we will use the

function G dot add nodes from here we can pass a list. So, we have to add n nodes, what

we can do is will write i from i for i in range n is the total number of nodes.

So, 0 to n minus 1 nodes will be added to the graph. At this point we can also display the

graph we had already created this (Refer Time: 02:49) graph function in the previous

video. So, we are going to reuse it. Let me copy paste that function from the previous

videos content and we will use it as it is.

(Refer Slide Time: 03:05)

So, initially when we display the graph it be all empty only the nodes will be there. The

next step is to add the edges into this graph which only has nodes as of now, we will

create a function for that.

We have to add the edges randomly as per Erdos Renyi model. So, let us create that

function. Will pass the graph and the other thing that has to be passed is p. So, in Erdos

Renyi basically we pass 2 parameters n and p. We pass n here or we can compute the

number of nodes from the graph itself. So, I am going to pass only these 2 parameters.

Let us create this function, now, if you remember from the previous video, we have to

add the edges randomly. So, basically we will take one pair of nodes and based on the

probability p we will add an edge or we will skip it.

So, let us take all pair of nodes, how can we do that? We will start we will use 2 for loops

write for i in G dot nodes. We got all the nodes here as the first element in the pair and

we will write for j in G dot nodes. We do not have to add the edges to from we do not

have to add the self edges from one node to itself.

So, we will put a condition here, if i is not equal to j only then we will add the edge. We

have to take a random number here and will compare that random number with

probability p. So, we will take r is equal to random dot random, which will return us a

value between 0 and 1.

So, if r comes out to be less than equal to p, we will add that edge. So, we will write G

dot add edge. The edge is going to be i comma j and in case r is greater than p we will

not add that edge. So, we will just write continue. So, these are the main things to add the

edges. Now we also want to display the graph and we also want to keep track of the

edges which are getting added at each iteration. So, let me do one more thing here.

So, we will keep track of the edges which are being added into this variable i comma j

ok. And then I would like to display the graph, so let me call that function display graph

which we have already added. Display graph has two parameter 3 parameters the graph

as you can see here, the graph and the node which is being added and the edge which is

being added.

(Refer Slide Time: 05:58)

So, here nodes are not being added because, all the nodes are added to the graph initially

only the edges are getting added at each iteration. So, if you note here and if you

remember ne is a list of edges right and i is a single node.

(Refer Slide Time: 06:24)

So, we have to keep we have to take care of that while we are passing the things here.

Now we do not want to change the colour of the nodes, we will just pass an empty string

here and we have to pass the edge which is being added in this iteration as a list. So, let

me convert this into list and will what I will be passing.

And in case we are not adding any edge we want to display the graph at that moment as

well because, we want to see whether in this particular iteration any edge was added or

not, we want to display the graph there also. So, let me copy this in that case there will

not be any new edge. So, we will keep this empty and everything else should remain

same. Now let us go back to main and see if we can start executing this code.

(Refer Slide Time: 07:19)

We are calling this function Erdos Renyi, we are calling display graph. There are 3

parameters to this function and in main we are passing only 1 parameter. So, let me pass

the rest 2 parameters. So, this is the initial displaying of the graph where there are no

new nodes, no new edges. Let us pass the empty strings there. So, the initial graph

should be created.

(Refer Slide Time: 07:46)

And when we are calling display graph from this function we are passing G comma, we

passing G and we passing empty string and a list ok. Let us see whether this function

were surprise for that. So, the initial condition this condition cannot be used because,

both of these are not empty and if you go to the else part or i is empty here.

So, we see that we need to make some changes into this function in order to be able to

use this for our set of conditions in this particular model. So, maybe we can write elif i is

equal to empty because this is the case that will be followed when we call display graph

from Erdos Rhenyi function. Now we basically do not know want to change the colours

of nodes because, every node is added initially. So, maybe we can let go off this thing ok.

Only the edges coloured has to be changed. So, this is fine and this is fine and this should

be fine let me see, we want to display the nodes right. So, let me remove the new nodes

statement from here and the rest of the nodes will be displayed in red colour. Rest of the

nodes is what we have to define here.

So, I will write rest and I will just copy from here ok. I am just playing around you will

be able to do it yourself as well or you can write the function once again. I will just

explain after I am done with this I think they should do ok.

So, in our case when we will calling display graph function from the set of Renyi

function, we are passing 3 things and in all the cases G is there and empty string is

passed as i and the third one is the list. In case we are not adding the edge this list is

going to be empty.

So, let us see which condition will be followed. This condition will not be followed

because, ne is not empty. We will be going into this and rest of the nodes is are going to

be all the nodes and new edges yes we are passing a list there, yes this should work.

(Refer Slide Time: 10:27)

Let us go to the main and the value of n is going to be integer right and the value of

probability is going to be between 0 and 1. So, that is actually no going to be integer. So,

let us add a float there. Now let us call this main function. Now we can now check the

functionality of this code.

(Refer Slide Time: 10:53)

So, let us check how it works. Enter the value of n, so let me pass a small value so that

we can check the graphs at every iteration let me pass 6 for example. The value of p let

me add 0.6 here we can pass any value between 0 and 1.

(Refer Slide Time: 11:15)

So, this is the initial graph where there are only nodes, 6 nodes are there, there are no

edges. Now I am closing this and in the next iteration we are getting this edge between

these 2 nodes and in the next iteration again we are getting this edge, we are getting an

edge and in the 4th iterations as you can see we are not getting any edge. We got this

edge and so in some iterations as you can see we are getting some edges one edge and in

some iterations we are not getting.

So, I think I have to do this for 6 into 6, 36 times right. So, as you can see 36 times this

loop will run and in some of the iterations i might be equal to j, so no edge might be

added. In some of the iterations the r might be greater than p, so h might not be added.

So, this was the functioning of Erdos Renyi model that we created. I also told you that

the degree distribution that Erdos Renyi model follows is not powerlaw rather it is

normal distribution. We had created a function for plotting the degree distribution in one

of previous video.

So, I am going to just use that function as it is, let me copy that and we will use this

function plot, degree distribution, so let us use it here. In order to show you the degree

distribution I will take some good number of nodes so that we can see a nice plot with a

with many values. So, I will remove the displaying of the graph so that, I do not need to

press all tab 4 again and again. So, I am just commenting this displaying of graph here.

Now let us check the functionality of this code.

(Refer Slide Time: 13:23)

So, we have to observe the degree distribution for an Erdos Rhenyi network. Let me add

100 nodes and let me add the probability to be 0.5.

(Refer Slide Time: 13:33)

So, this is the sort of curve that we obtain. So, you can see since we were adding the

edges randomly, there were no preferential attachment. We can see that there are very

less nodes with very less degree and there are very less nodes with very high degree and

there are very large number of nodes with medium degree. So, that is a sort of

distribution that we obtain, sort of normal distribution that we get in the case of a random

network.

(Refer Slide Time: 14:08)

Let me try it once again for more number of nodes. Maybe I will add some 1000 nodes

and the probability to be 0.6. So, again this is nice curve that we obtain. So, as you can

see as you keep increasing the number of nodes, you can see the nice distribution that it

takes ok. So, that was about the Erdos Rhenyi network to Erdos Rhenyi model to create

the random networks and it follows the normal distribution.

