
Social Networks
Prof. S. R. S. Iyengar

Department of Computer Science
Indian Institute of Technology, Ropar

Rich Get Richer Phenomenon
Lecture – 122

Implementing Rich-getting-richer Phenomenon (Barabasi-Albert Model)-2

(Refer Slide Time: 00:05)

In the previous video, we discuss the main idea behind Rich-getting-richer Phenomena.

And we also discuss this steps that we are going to follow for implementation. In this

video we are going to start off with implementation.

(Refer Slide Time: 00:19)

So, let me import some packages that we are going to need, we are going to need the

network. We are going to take random number, so we will meet random package. We are

also going to display the networks, so let us import matplotlib ok.

So, let us start our main function ok. So, if you remember from the previous video, if you

remember the outline if you have not seen the video, you may go back and see the steps

at we are going to follow here. So, we require the values of n, m and m 0, n is the total

number of users, m is the number of edges that every new node will get attached to, m 0

is the number of nodes in the initial network that we will start with.

Let us take the value of n from the user. So, we can use the function raw input and in

case you are using Python 3.x you can use input function instead of raw input. So, let us

use this function, raw input and as the user entered the value of n all right. Next we need

the value of m 0 as I told you can initialize m 0 to be some 3, 4, 5 whatever you want.

Let me take m 0 based on n that the user will pass. So, I plan to take a random value

between 2 is that is the minimum number of nodes that should be there in the initial

network and n divided by 5; to n divided by 5 I will choose the random number between

2 to n by 5. So, assume n the user entered n to be 100 then I will take a random value

between 2 and 20 that is how I will start the initial network..

In fact, if the user enters a very high value of n that this might not be a good idea, you

can it is it is actually better to fix up a value of n 0 to be 3, 4 or something. For example,

user enters n to be 1000 then your initial networks will be between a random number

between 2 and 200 right. It is fine you can take any value of m 0. And if you remember

the only thing is that m should be less than equal to m 0. So, here we will take m to be m

0 minus 1 m is equal to m 0 minus 1. And we have to start with an initial network with m

0 nodes..

So, as of now we have not to means started the graph. So, let us start the initial graph

with m 0 nodes. And the condition is that every node should have at least one edge. So, I

will have a path graph because, there every node has at least one edge you can do any

other thing like, you can add the edges one by one just making sure that an every node

has one link at least. You can manually add the edges, so it is up to you. I will take a path

graph, I will write nx dot path graph of m 0 nodes ok..

Now, to start off I wish to see how the graph looks like. So, that we can see the changes

that that keep happening to the graph at every time stamp, I am going to make use of a

function display graph that we created in one of the previous videos. So, I am going to

just take the function from there and I will briefly explain it here, I will not write the

function line by line here.

(Refer Slide Time: 04:37)

So, let me call that function display graph before that let me copy it. So, this is the

function that we created one of the previous videos, I am copying it and pasting it here, I

brief out for the once you are not see in the previous videos.

So, what this function is doing? We are passing the graph G that has to be displayed. We

are passing i, i is the new node to be added and ne is the list of new edges that are going

to be added. So, basically at every iteration I plan to call this function display graph and I

also want to display the new edge that got added in this iteration, what did I say; I want

to display the new node that got added, I and I also want to display the new edge is that

got added. So, I am going to change the colours of this nodes and edges. So, that its nice

to see how the nodes are getting added for that only I have created this customized

function.

I am going to use a circular layout ok. So, I will use this function nx dot circular layout

G. And since, I am going since i need to display the colours of the new node and new

edges differently. So, what I have to do here is that. Firstly, I am putting this condition

ok. So, initially there will be no new node no new edge. So, i and ne will be empty that is

what will happened at the first before any iteration takes place initially right. So, new

node will be. So, we will maintain a list of new nodes and we will maintain a list of new

edges. Initially, they will be empty and rest of the nodes which is all the nodes in the

graph, rest of the edges which is all the edges in the graph. So, we require these 4 list

previous nodes, new node previous edges, new edges, these 4 list, we need ok..

(Refer Slide Time: 06:43)

In case i and ne are not are not empty, there are some values in them, what are we going

to do is, new node list is going to have i new edges list is going to have ne, which we

passed as a parameter. Rest of the edges will be all the edges, I am sorry rest of the nodes

will be all the nodes minus the new node, rest of the edges will be all the edges minus

new edges minus the intersection right; minus the common edges basically, let me

explain.

(Refer Slide Time: 07:17)

So, it should take b a and a b to be the same edges right. So, that is why we are deducting

that those edges ok. So, then we are displaying. So, since you want the graph to be

customized having different nodes having different colours different edges different

having different colours, you will have to make use of this function draw networkx nodes

and draw networkx edges. So, separately you are calling them.

So, first function will be to display the existing nodes, second function will be to display

the new nodes or vice versa. First function will be to display the new edges and second

function is to display the existing edges ok. So, look at the parameters quickly we will

pass the graph G and then the position that we already created and the node list that has

to be given this particular colour. And we are specifying the node colour to be green here

and the existing nodes, we are displaying red, it is new edges, we are display in green

and you can also change the style and displaying the new edges to be dotted so that, we

can precisely differentiate. And we existing edges, we are displaying that. So, this was

about the displaying part, now we are calling this function display graph and ok.

So, we are calling this function, we need 3 parameters G i and ne. So, let us pass G here

and i initially, there is nothing, there is no node and the edges also will be empty ok. So,

let us call this function let us call main to check the functioning of our existing code ok.

(Refer Slide Time: 09:33)

Let us call this file, enter the value of n, I am going to get 100 ok. So, this is the initial

graph this is the initial graph as you can see we had chosen m 0 to be random. So, this is

the number of nodes that the code has chosen. This is the initial graph and we are going

to add the nodes one by one to this graph.

(Refer Slide Time: 09:56)

I can execute it again to see and this is taking these many nodes initially, also taking

quite good number of nodes initially, I am sorry; I am sorry, second good number of

nodes by chance ok.

(Refer Slide Time: 10:27)

I am just trying to see whether it case. So now, it took 1, 2, 3, 4, 5, 6 nodes initially.

(Refer Slide Time: 10:32)

So, it always keeps changing you can fix it or you can have the good design. So, this is

the initial graph and we are going to add the nodes to this graph.

Now for adding the nodes let us create a function let us create a function add nodes

since, we are going to follow Barabasi Albert model, let me name that accordingly

Barabasi ok. We should pass the graph there we should pass the value of n the total

number of nodes, we should pass the value of m that is the number of edges and it should

written the graph that is what we are going to we will be displaying ok.

So, we have to create this function, now you see there are m 0 nodes into the existing

graph already ok. So, we actually need the value of m 0 here right because m 0 is the

number of nodes already. So, I should better pass m 0 over here and m 0 over here and

let me decide the value of m in the function itself. So, I am removing this and I am

passing G n and m 0. Let me decide the value of m here, I will write m is equal to m 0

minus 1 ok. So, we have m 0 nodes and we have to add n minus m 0 nodes more..

So, I will start a loop for every node for i in range m 0 plus 1 is the next node that is

going to be added and we have to stop at n. So, since it is a range function, I will put n

plus 1 because, it excludes last value. So, this is a loop to add nodes one by one. So, we

will add the first node G dot add node, the node is going to be I now we are added the

nodes now, we have to add the edges. If you remember from the previous video, we have

to do some pre processing. So, let me see that and under pre processing before that let me

also write add the edges one by one ok.

Now, what is the pre processing? We need to chose the nodes based on the probabilities,

which are based on the degrees. So, we need to maintain the degrees. So, let me take

dictionary degrees is equal to nx dot degree G this written as a dictionary of dictionary,

where the key is the node and the value is the degree ok. Now we also need to maintain

the probabilities, which are which will be based on the degrees. So, let me create

dictionary and node probabilities inside probabilities no probabilities is equal to empty

dictionary this is what we are going to create, now how do we create it?

As I told you the probabilities probability of node i is equal to the degree of i divided by

the sum of the degree of all the nodes. So, we should get a start loop here to assign the

values to this dictionary. So, I will write for each in G dot nodes node probabilities for

each is going to be degree the I am sorry the degrees are there in these dictionary degrees

of each, we will give us the degree of that node and that should be divided by the sum of

all the degrees. Now where are all the degrees? Degrees dot values, if you write degrees

or values you get a list of all the degrees, we are going to sum them up and since we are

dividing let me do the (Refer Time: 14:59) casting float ok, we should work.

So, we have now created the dictionary node probabilities ok, if you remember from the

previous video. Now, the next step is to create list that is cumulative node probabilities

since, we want then, to be ordered I got create list of list and not the dictionary. Let me

show, you how will do that node probabilities cumulative is equal to a list ok. So, we

have to take the probabilities from these dictionary node probabilities one by one and

based on that we will compute the cumulative probabilities. So, at this point let me start

loop, I will write for n comma p in node probabilities dot items.

Now, what do we get here? Node probabilities is a dictionary dot items will give us a list

of topples and a re topple we will have 2 things n comma p that is the node comma the

probability. So, we are caption that in n comma p here and we have to store the

cumulative values in the in the list of list that is node probabilities cumulative here. So,

let me initialize the probability to be initial probability to be 0 you will understand as I

go on, I am plating a list temporary list, let me it temp that we will appending that we

will appending to this list ok..

So initially, this list has to have node comma the cumulative probability. So, the

cumulative probability for the first node is going to be basically, 0 plus it is own

probability, if you remember from the previous example, we took in the previous video.

So, the cumulative probability for the first node is going to be it is probability itself. So,

we have going to add 0 it, and the cumulative probability for the second node is going to

be the cumulative probability for the previous node plus the probability for the current

node. So, we need to maintain this variable previous.

Now, this is going to be the list for the first node and we will append it to the node

probabilities cumulative dot append temp right..

(Refer Slide Time: 17:44)

And the previous should now be updated. So, I will write previous is equal to previous

plus plus p, because p was the probability for the current node that p appended. In order

to add the edges, we will now create another loop that we make use of this cumulative

probabilities list. One thing that we have to take care of is an edge that has already been

added should not be added again ok.

So, we need to keep a track of the number of edges added that is one thing, second thing

is we also have to keep track of the edges that I have been added. So, we need to

maintain a list of the edges that we have added for a given node so, that we do not repeat

the edges. So, in case and if you do not keep a track of that that is if you do not keep a

track of the edges that we have already added, we might end up adding the same edge

again. So, in that case it might happen that some nodes are adding lesser edges than n

ok..

So, let me create a list new edges is empty; here, we will store the new edges and number

of edges added number of edges added for this particular node right initialise to 0. And in

order to check whether the same existing node is not going to be connected again, I am

going to create list target nodes initialise to 0, I will show you how these list are going to

be add going to be used.

Now, we have to add the m edges to the new node. So, I will start loop here why?

Number of edges added is less than m what do we do? We have to chose an existing node

based on it is probability for that we need to random number. So, I will take r is equal to

random dot uniform, which is going to give me a random value between 0 and 1 you can

also use random node random, you can use that this one I think just check, what is the

difference between these 2 random dot random gives value between 0 and 1 right ok.

So now so, if you remember the only difference between random and uniform is that in

random you do not need to pass any parameter and it gives you a float value between 0

and 1 and uniform. You can pass the parameters a comma b where the floating point

value that the function will return will be between a and b. So, if you want a random

floating point between 0 and 1, you can use uniform bit parameter 0 and 1 that was about

the probabilistic of these functions.

Now, we have to chose an existing node based on this r. So, if you remember there is

going be your window which is cumulative probability list will provide us. So, we have

to check the first nodes cumulative probability, if r is less than equal to cumulative

probability of the first node, we will stop there otherwise; we will go to the next node, if

r is less than equal to the cumulative probability of the second node we will consider that

else we will go on. So, let me start loop here why not r is greater than we need this

starting point as well. So, let me let me take a variable here previous cumulative is equal

to 0. So, this is just create the windows we need to keep track of the previous nodes

cumulative probability as well in order to find the window.

So, I will write while r is greater than previous cumulative and r is less than equal to

node probabilities cumulative of the first node ok. So, we need keep a track of the first as

well k is equal to 0, first node k. And if you remember node probabilities cumulative is a

list of list, where every member list has first element as the node and the second element

as the cumulative probability. So, we will write I am sorry one here right. So, while this

does not happen that r is not into that window, we will keep going on with the next

element.

So, in our process previous cumulative is going to be updated with the cumulative

probability of the current node and k will be implemented ok. Now whenever it finds a

node, whose cumulative probability is more than this random number it will come out of

the loop and when it when it comes out of the loop, it has found the node that is the

target node. So, target node we are taking a variable target node, sorry target node is

equal to now node cumulative probabilities is a list of list and every list has first element

as a node and second implement as cumulative probability. Now we need the element

here the node here. So, we will write k and here 0. So, we will get the first element that is

the node that is the node..

Now, we have to check whether this node has already been connected to the new node or

not? So, for that wait there is a spelling mistake target write e. So, we have already

maintain this target nodes list, which will contain the all the target nodes. So, if though

new node which we have chosen is already in target nodes, we will continue finding

another target node if the if the target node is not there in this list we will added there ok.

So, we will write it is target node in this list target nodes, what will do? We will continue

ok, we will find another target node otherwise this target node is not there in target nodes

list. So, we will appended there target nodes dot append this new node target node.

So basically, if the node that we have chosen is already in the list of nodes that is the

target nodes. We will continue means we will go back here and m is not implemented.

(Refer Slide Time: 25:24)

So, we will repeat the whole process up to this point and in case the target node is not

there in this list, we will do the rest of the processing that is connecting to this node by

using the function G dot add edge. So, we are going to add an edge from r node that is i

to the target node right. So, the number of edges added will be implemented number of

edges added plus equal to 1. And we also need to keep track of the new edges added

because, we are going to change the colour. So, we early maintain a list new is large

sorry new edges new edges dot append, we will add this edge and the edges basically i

comma private node ok..

So, this is the new edge that is added. So, we can also keep track of the number of edges

added. So, that we can check whether at every step we are adding same number of edges

or not. Let us check print number of edges added. So, we will just keep a track of the

number of edges added and after that we can display. So, this is one iteration over that is

1 node added with m edges. So, at this point you would like to display the graph take

parameters, 3 parameters G comma the new node added is i the new edges added is

where you keeping the this is new edges all right.

So, this should return the graph. So, I will return G. So, I think this function is done and

we can start executing it ok.

(Refer Slide Time: 27:17)

So, this should return the graph. So, I will return G. So, I think this function is done and

we can start executing it ok.

So, that is check it enter the value of n let me enter 50..

(Refer Slide Time: 27:23)

So this is the initial graph, it has chosen m 0 to be true.

(Refer Slide Time: 27:32)

I will close this graph and see this is what I get in the first iteration, the new node is

getting attach to one existing node. So, green is a new node and this dotted line indicates

the new edges added.

(Refer Slide Time: 27:45)

So, I am closing it and I see the second iteration the next new node is getting attach to

the one of the existing edges.

So here, you can see there are 3 existing nodes, which are red and 2 of the nodes have

degree 1 and o of the nodes has degree 2. So, the node which has degree 2 had more

probability of getting attach to the new node, which is precisely what is happening

having said that you cannot always be showing that always node, which has high degree

will always big connecting it just a probabilistic phenomena right because, the referential

attachment is probabilistic mechanism..

The new node is free to connect to any node in the network whether it has high degree or

it has just single edge. However, if new node has a choice between degree 2 and a degree

4 node then degree 4 node will be twice as likely to be connecting to the new node as

compare to the node will with degree 2. So, that is what happens.

(Refer Slide Time: 28:54)

Now let us take the next iteration ok. So, the new node is getting attach to a node, which

has degree 1. So, by chance it got connect to a node with less degree because, this is

probabilistic. Let us check the next one.

(Refer Slide Time: 29:09)

So, again the node is getting attach to a node with degree 1 because, there are few nodes.

(Refer Slide Time: 29:14)

Now again the node is getting attach two by chance a node with less degree. Let us see

the next one.

(Refer Slide Time: 29:20)

So now, this node has chosen an existing node high degree. Let us check the next one.

Again, it has to chosen the node with high degree.

(Refer Slide Time: 29:30)

Now it has chosen our node with degree 2..

.

(Refer Slide Time: 29:34

So, that keeps happening.

(Refer Slide Time: 29:36)

But overall the nodes which have high degree will be connecting more to the new nodes.

(Refer Slide Time: 29:42)

So, you can see here again happening there. So, it is again getting the connected to the

node with high degree.

(Refer Slide Time: 29:47)

So, at each times and the network will not be symmetrical there will be more edges

towards one towards some bunch of nodes, if that is not happening this network would

have been symmetrical which is not so. So, I will have to keep closing this symbol 50

times. So, let me quickly do that you can keep observe with behavior ok. I should have

taken the smaller network anyway.

(Refer Slide Time: 30:25)

So, this is the kind of structure that you are getting. So, a code is working fine alright.

(Refer Slide Time: 30:35)

Now, an important property of the network start follow Barabasi Albert model or

preferential attachment or Rich-getting-richer phenomena is that the degree distribution

follows power law ok. That means, that the number of nodes, which less get less degree

are way to high number and the number of nodes with very high degree are very less in

number. So, that is the sort of property that is networks follow.

Let us try to get the degree distribution for this network, we had already created this

function for plotting the degree distribution in one of the previous videos, I am going to

just copy paste from there and I will briefly explain that. So, I will copy paste it, I will

quickly explain this ok.

(Refer Slide Time: 31:24)

So, what you doing here is since, you want to plot the degrees the distribution of the

degrees, we need to get all the degrees. So, we are using the function nx dot degree g,

which returns a dictionary we are taking all the values from that dictionary that is the all

the degrees, we are store in this list..

Now, out of that list we are maintaining list of unique degrees because, what we have to

check we have to check the number of nodes having a particular degree. So, we should

know what are the unique degrees basically, the all possible degrees that the nodes have

in that network. So, that is what will be kept in this list and then we are sorting this list

because, we have to plot them. And we will keep a track of the number of nodes with

degree 1, degree 2, degree 3 and so on, where the x axis will have all possible degrees in

sorted order..

So, we have to maintain a count of degrees for all possible degree in the network. So, we

have created this, list now in order to populate this list we have started this loop for i

unique degrees, we will take first element of unique degree. And we will check in all

degrees how many elements that is how may nodes have that particular degree, we will

make use of a function count. So, we writing all degrees dot count i, this will return as

the number of nodes having the degree i and we are appending that to this list count of

degrees and then we are simply plotting them.

So, x axis will have unique degrees, all possible degrees sorted and y axis will have the

count of degrees that is count of nodes having that particular degree. I am get displaying

them in their color and this is for labeling title that is what is the function about ok..

(Refer Slide Time: 33:29)

Let us call this function here i am sorry here in the end in name we are calling this

function plot degree distribution G ok. So, let me let me ask the user to plus enter after

getting all the plots after getting all the graphs..

(Refer Slide Time: 33:54)

Let us check the functionality I will get. So, 30 this is initial graph and these are the

nodes getting added I have to press this 30 times and after that we should get the

distribution get everything works fine ok.

(Refer Slide Time: 34:16)

I press enter now this is the distribution that we are getting. So, this is sort power law in

the sense that the nodes with less degree are very high number and the nodes with very

high degree are very less in number. So, power law is basically the sort of plot since a

number of nodes is less we are not getting it very nicely calling power law, but

nevertheless it is following the that law.

If you take good number of nodes say some 100 or say 1000, you will get a nice

distribution you can also check that press check that. So, let us check let us execute this

code for some higher value of n. So that, we can see the distribution nicely so in order to

that I need not press the I need not close the graph multiple times, I am going to remove

this displaying of the graph from all the places that is all that is that is only we will

calling this display graph function. So, I have commented that.

(Refer Slide Time: 35:27)

And let us call this with a high value of n say 1000.

(Refer Slide Time: 35:33)

So, 158 edges are getting added at every movement I think it is a very high number, I

think, I should fix it on a smaller number there this is going on and on because, it has to

go on for 1000 times. So, it is going on and on it is taking some chain let us see it is just

finished, I am sorry..

(Refer Slide Time: 35:53)

So, I will press enter and I got the distribution. So, this is fall in solve power low as you

can see right if you take a log plot of this we will get this straight line. So, that is the

whole idea about this.

So, as I told you the networks which follow preferential attachment follow power law as

well and that is what we have observe there is well. So, that was the whole idea behind

Rich-getting-richer phenomena. Here, we were adding the edges based on the degrees

right, more degree more probability of getting connected. On the other hand, if you add

the edges randomly what should happen? in that case, you will not get this power law

distribution because, there is no preference to words getting a attach to a particular node,

we are just randomly getting connected to the existing nodes.

So, in that case you will not the getting power law. In fact, you will getting normal

distribution. So, in the next video we are going to implement random networks and we

will see the kind of distribution that we obtain.

