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Hey  everyone,  in  this  video  sequence  we  are  going  to  implement  an  interesting

phenomenon that is called Rich getting richer Phenomenon. It is also called Matthew

effect and it is also called Preferential Attachment. Now, there is a particular model that

is called Barabasi Albert model which is precisely based on this method that is called

preferential attachment.  So, we are going to implement Barabasi Albert model in this

subsequent videos and that be same as implementing rich getting richer phenomena as

well. Before we get into the steps of implementation, let us look at the main idea behind

this concept.
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So, the main idea is that we are going to start with some m naught number of nodes. And,

these nodes are going to have some edges across each other. The only condition is that

every node should have at  least  one edge;  this  means that  we start  with an existing

network of m naught nodes. And, the new node and the new notes get attached to this

existing network one by one. Now, how do they get attached? There are two properties

that every node follows and the first thing is that every node gets attached to some m

number of existing nodes. So, for example, say m naught is equal to say 5 and m has to

be less than equal to m naught.

So, assume m naught is equal to 5 and m is equal to say 3. So, we will start with an

existing network of 5 nodes and 1 new node will come and it will get attached to some 3

existing nodes. And, then second node will  come that will  also get attached to these

existing 3 nodes and so on so, this keeps happening. Now, how do we decide which 3

existing nodes should get attached to the new node, that is decided by a preferential

attachment. Now, what is preferential attachment? This means that the more connected a

node is, the more likely it is to receive links with a new node. 

In  other  words  more  degree  an  existing  node  has  more  probability  it  will  have  of

connecting  to  the new node. So, this  is  how we will  keep adding new nodes  to  the

existing network. This was the main idea behind rich getting richer phenomenon. Now,

let us look at this steps that we are going to follow for the implementation.
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So, I am going to required value of n, n that is the total number of nodes in the network.

We will take the value of n from the user, the other thing that we need is the value of m

that is equal to the number of edges that every new node is going to get attached to;

basically the number of edges that every node will introduced into the network. So, we

will we can take value of m from the user or we can have our code decide the value of m

automatically. 

In our code we will decide the value of m based on n, it is up to you can do whatever you

feel like ok. The other thing that we need is m naught, as I told you m naught is the

number of nodes in the existing network, in the initial network. The only condition is that

m should be less than equal to m naught. So, we need n, we need m and we need m

naught; these 3 values we need and the only condition is that m should be less that equal

to m naught.

So, in our code we are going to have m is equal to m naught minus 1, you can just fix it

on any a new value that you wish to have. So, in our code we will have m naught to be

any random number between 2 to n n by 5, this is this is just an assumption we are

taking; you can go ahead with any value of m naught. You can fix on a value m naught is

equal to 4. So, every time you will start with an initial network of 4 nodes and m we will

take be m naught minus 1 you can take any value. 



Now, we have a network of m naught nodes, the next step is to keep adding new nodes to

this existing network. So, the number of nodes that are going to be attached is equal to n

minus m naught because, n is the total number of nodes. So, these n minus m naught

nodes are going to be attached to existing network based on preferential attachment as I

explained you. Now, let us see how we are going to implement preferential attachment

ok.
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So, we have to add n minus m naught nodes one by one. So firstly, we will add the node

to the network. The next step is to add m edges to this node to the existing nodes in the

network. Now, how are we going to decide the nodes that are going to be attached to this

existing node? As I told you we need we need the probabilities and the probabilities are

going to be decided based on the degrees that the nodes have; more the degree more the

probability right. So, for that pattern we need to keep a track of the degrees of the nodes.

So, we will do some pre processing for this keeping track. We will maintain a dictionary

of  degrees  for  every  node  because,  we  the  degrees  basically  going  to  decide  the

probabilities. 

Second thing is we will maintain a dictionary of probabilities. So, probability of a node

getting attached to a new node will be equal to the degree of that node divided by the

sum of the degrees of all the nodes right. So, more the degree more the probability so, we

are going to maintain a track of the probabilities in a dictionary. Now, apart from that we



are going to maintain a third thing, we will basically maintain a list of list because we

want  to  keep an order  of  the things  and order  of  nodes  dictionary  does  not  let  you

maintain an order. So, we are preferring to keep a list of list for maintaining cumulative

node probabilities ok. 

Now, let me tell you why we need that. So, whenever you have to choose a node based

on a probability this is a standard technique that we use, although you can device some

other method is well. We are going to follow this method of making use of cumulative

probabilities. Now, let me explain you what that is using an example. Assume there are 3

nodes and they have the properties 0.2 0.3 and 0.5, we are going to maintain a list that is

cumulative probabilities.

So, the first node we have cumulative probability 0.2, the second we will have 0.2 plus

0.3 that is 0.5, the third will have 0.5 plus 0.5 that is 1.0. So, this is the less that we are

going to maintain, I will show you how we are going to use this list. So, when new node

has come, we have to connect this new node to existing m nodes for that we will choose

random  number  between  0  and  1  ok.  And,  then  whichever  node  has  cumulative

probability  more than this  random number is actually  the node which is  going to be

connected to the new node. 

Let me show that one example. So, assume r comes out to be 0.5 0.4 let us look at the

cumulative probabilities list that we just created. So, first nodes cumulative probabilities

0.2 which is less than 0.4; so, we will go ahead we will check the second one, 0.5 is the

second value, 0.5 is more than 0.4. So, we will stop there since r is less than or equal to

0.5 the second node is basically the node which is going to get connected to the new

node. You would have understood this  method, but do you understand the main idea

behind it.

So, the main idea is that more probability node has more likely it will get connected to

the node, this is what we have to implement. Now, try to understand how this particular

method is helping us implement the same thing. So, basically more probability a node

has more window it will have in the cumulative probabilities list. Now, what do I mean

by that? So, as you can see just take a look at the cumulative probabilities list. So, we

have first nodes cumulative probability to be 0.2. So, it is window will be 0 to 0.2, the



window for the second node is 0.2 to 0.5 ok, the window for the third node is 0.5 to 1.0

ok. 

So, now you can see that the window for the third node is more than the window for the

second node and the window for the second node is more than the window for the first

node. So, more wide a window is more likely it is that the random number is going to fall

into that window ok. So, assume a node has probability 0.1, it is window will be 0.1 big,

if a node has probability 0.6 it is window will be 0.6 wide and more likely it is that the

random number is going to fall into that window ok.

And this precisely we are implementing here. So, if a node has more probability the

random number is going to fall into that window more likely and that is how we will

connect that node to the new node. So, that is the main idea. This is how we are going to

add the edges to the new node and this is how we are going to add new nodes up to the

point that we get total n nodes in the network. So, this is the main idea.

In fact, not the main idea this is detailed steps of implementation that I have discussed

with  you.  I  would  suggest  you  since  I  have  gone  to  detail  into  the  steps  of

implementation,  it  will  be  nice  if  you  just  start  of  yourself,  coding  yourself  and

implement  yourself  and do not  follow the  subsequent  videos  line  by line.  And,  just

compare the results with the results of the subsequent videos that will be a nice practice.

So, let us get started with the coding part. 


