
Distributed Systems
Dr. Rajiv Misra

Department of Computer Science and Engineering
Indian Institute of Technology, Patna

Lecture - 07
Distributed Mutual Exclusion Algorithms and Non-Token Based Appproaches

Lecture 7 distributed mutual exclusion algorithms and non-token based approach.

(Refer Slide Time: 00:18)

 (Refer Slide Time: 00:21)



Preface; recap of previous lecture. In previous lecture we have discussed about the global

state; that is consistent, strongly consistent and inconsistent global states, cuts in a space

time diagram, and model of communications. We have also seen the snapshot algorithm;

that is given by Chandy-Lamport and that is called Chandy-Lamport algorithm, to record

the global snapshot.

Content of this lecture: In this lecture, we will discuss about mutual exclusion algorithm

for distributed computing systems;  such as non token based approach, quorum based

approach, and token based approach, for the distributed mutual exclusion algorithms 

(Refer Slide Time: 01:12)

Introduction.  Mutual exclusion in a distributed system. So, concurrent accesses to the

processes to a shared resource or a data, is executed in a mutually exclusive manner; that

is one process at a time, is allowed to execute in a critical section. And in the constraints

of a distributed system where there is no shared memory, there is no physical clock, and

the messages are basically, is having unpredictable delays, but it is a finite delay. 

So, in that scenario,  designing this mutual exclusion,  distributed mutual exclusion, is

basically going to be a challenging task. So, we are going to see in the introduction, that

only one process is allowed to execute the critical section at any given time. So, in a

distributed shared memory, the existence of semaphores or shared variables, and a local

kernel system cannot be used to implement the mutual exclusion. Hence we are going to

discuss how the distributed mutual exclusions, are going to be implemented, with the



message  passing  only.  So,  message  passing  is  the  sole  means  for  implementing

distributed mutual exclusion approaches of distributed mutual exclusion.

(Refer Slide Time: 00:31)

Distributed  mutual  algorithms  must  deal  with  unpredictable  message  delays,  and

incomplete knowledge of the system state. Three basic approaches for distributed mutual

exclusion, we are going to cover up in this part of the lecture. They are non token based

approach, quorum based approach, and token based approach. 

 (Refer Slide Time: 03:01)



Non  token  based  approach  consists  of;  two  or  more  successive  rounds  of  message

exchanges, among the sites to determine which site is allowed to enter into the critical

section next. For example, we are going to cover up two algorithms, they are known as

Lamports algorithm and recartagarwala algorithm for non token based approaches 

(Refer Slide Time: 03:26)

Quorum based approach:  Each site  request  permission  to execute  the critical  section

from only a subset of sites, not all the sites, and that subset of site is called a quorum. So,

any two quorums contains a common site. So, this common site is responsible to make

sure that only one request executes that only one request executes the critical section at

any  time.  For  example,  the  algorithms  like  Meekawa algorithm,  Agarwal  el  Abbadi

algorithm. They are all quorum based algorithm which we are going to cover up.

Then next is the token based approach for designing distributed algorithms.



(Refer Slide Time: 04:05)

So, here unique token, is also known as the privileged message is shared among the sites.

A site is allowed to enter into the critical section, if it possesses that particular token. So,

mutual exclusion ensured, because there is only one token, and that is unique 

(Refer Slide Time: 04:34)

So, the token based approaches are Suzuki Kasami broadcast algorithm, Raymonds tree

based algorithms now preliminaries for the system model we are going to, now cover up

now. So, the system consists of n different sites S 1 to S n. we assume that a single

process is running on each side. So, the process at site i is denoted by p i. So, either we



can. So, instead of saying sites, we will be now calling it as a process running on that

particular site 

The site can be in one of the following three states, requesting for a critical  section,

executing the critical section, or neither executing nor requesting for the critical section,

they are idle state. So, in requesting the critical section state, the site is blocked, and

cannot make for the request for the critical section. In idle state, the site is executing

outside the critical section. In a token based algorithm, the site can also be in the state

where the site holding the token is executing outside the critical section, and this is called

an idle token. So, at any instant, a site may have several pending requests for critical

section. A site queues up these requests and serves them one at a time 

(Refer Slide Time: 05:47)

Requirements  of  mutual  exclusion  algorithm:  The  primary  requirement  is  the  safety

property at any instant, only one process can execute the critical section, and this is the

most important property, essential property it is. 

The next requirement of a mutual exclusion algorithm is, the liveness property. This says

that this property states that, absence of deadlock and starvation, it should be maintained;

that means, two or more site should not endlessly wait for the message, which will never

arrive, and this is an important property, to ensure the mutual exclusion.



Third property is called a fairness. So, each process gets a fair chance to execute the

critical  section.  Fairness  property  generally  means,  the  critical  section  execution,

requests are executed in the order of their arrival in the system, and this order of arrival

is determined by the system of logical clocks, and this is also an important property for

the different distributed mutual exclusion algorithms. So, this the essential, the first one

is the essential property, the other properties are important properties 

(Refer Slide Time: 07:25)

Now, we are going to see the performance metrics, and these performance metrics are

used to compare the algorithms distributed mutual exclusion algorithms.  So, the first

property  is,  basically  performance  metric  is  called  message  complexity. So,  message

complexity is the number of messages, required per critical section execution by the site.

Second is the synchronization delay. So, after a site leaves the critical section, it is the

time required, and before the next site enters the critical section. So, here we can see that,

after a site exits the critical section and a new site when it enters, that particular delay is

called a synchronization delay.

So, when a site exists the critical section, there are certain rounds of message exchanges,

which will prepare the system. So, that the next request or next process can be allowed to

go into critical section, and that is why synchronization delay and some of the distributed

algorithms are basically seen. 



(Refer Slide Time: 08:29)

Third  performance  matter  is  called  basically  the  response  time.  The  time  interval  a

request waits for its critical section execution to be over after its requests message have

been sent out, and that is called response time. So, here when the request message has

been send out, till the site exists the critical section, the entire duration of the time is

called the response time. 

Now, fourth time is called, fourth metrics is called system throughput. The rate at which

the system executes the request per critical section is called system throughput. System

throughput can be calculated using a formula; that is 1 by SD means the synchronization

delay plus the average execution time, where SD synchronization delay, and E is the

average critical section execution time, and that basically will compute the throughput of

the critical section execution. So, these are four performance matrics we have seen, and

we are going to use it to compare different distributed mutual exclusion algorithms.



(Refer Slide Time: 09:44)

Now, another performance is about high load and low load situation. So, we often study

performance of mutual exclusion algorithm under two special loading conditions; that is

the low load and the high load. The load is determined by the arrival rate of critical

section requests. Under the low load condition there is seldom more than one request for

the critical section, present in the system simultaneously. Under heavy conditions, there

is always a pending request for a critical section at a particular site. 

(Refer Slide Time: 10:25)



So, non token based approaches. Lamports algorithm. So, Lamports algorithm is first in

this  particular  class  of  non  token  based  algorithms.  So,  in  Lamports  algorithm  of

distributed mutual exclusion is using the system of logical clock, which is designed by

the Leslie Lamport.

(Refer Slide Time: 10:43)

So,  this  particular  algorithm  is  a  demonstration  of  use  of  the  Lamports  clock,  in

designing the distributed mutual exclusion algorithm. So, Lamports algorithm request for

critical sections are executed in the increasing order of the timestamp, and the time is

determined  by  the  system  of  logical  clock.  And  this  will  ensure  that  this  is  a  fair

algorithm. So; that means, this algorithm ensures the fairness property. Fairness property;

that means, the order in which the requests are arriving and they are being served in that

particular order and that is ensured by the using, the use of logical clocks, that we will

see here in this algorithm.

Now, every site Si keeps a queue; that is called a request queue of the process i, which

contains  the  mutual  exclusion  request  ordered  by  their  timestamps.  This  algorithm

requires the communication channels, to deliver the message in FIFO order. There are

three type of messages, used in this algorithm, they are called request message, reply

message, and release message. These messages with timestamps also update the logical

clock, that we will see in the algorithm. 



So, the algorithm; Lamports algorithm for non token based approach, for designing the

distributed mutual exclusion. The first action is, requesting the critical section. So, when

a site Si want to enter the critical section, it broadcasts a request message, and request

message has the parameter, the timestamp of and the process id that is i. So, the request

message contains the timestamp request message of process i, and this message will be

broadcast to all the other sites and places the request on its request queue also.

(Refer Slide Time: 12:50)

Now when a particular site S j receives this request message from Si, this Sj places the

site as highs requests, on his request queue that is request queue of j, and also returns a

time stamped reply message back to Si. So, these two actions we have seen; that is to

request for the critical section execution by a particular process i.

Now, second part of this algorithm is about executing the critical section. The site Si

enters the critical section, when the following two conditions hold. The first condition is

says that Si has received a message with the timestamp, larger than t Si from all other

sites. So; that means, Si is or site i is, message is basically having the lowest timestamp.

So, it is having the highest priority, and that is why it is executing inside critical section.

Another condition is L 2 condition, says that site Si request is at the top of the request

queue. Also if you see the request queue, the i is request will be at the head of the queue.

These two conditions are basically ensuring that a particular process i, is executing the

critical section.



Now, third part of the algorithm says that; once a particular process finishes the critical

section execution, then it has to release the critical section execution. So, releasing the

critical section, a site Si upon executing the critical section, removes its request from the

top of its request queue, and broadcast a timestamp release message to all other sites . So,

it will send the release message. So, and also it will remove i from the queue, and the

release message will be broadcasted. So, when a site Sj receives the release message

from Si, it removes Si requests from its request queue. So, when a site removes, a request

from its request queue, its own request may come at the top of the queue enabling it to

enter into the critical section, if it is interested for, or if it is requesting to go in a critical

section.

Now, correctness. So, theorem Lamports algorithm achieves mutual exclusion, that proof

goes like by contradiction. Suppose the two sites Si and Sj, they are executing inside the

critical section concurrently at the same instance of a time. So, for this to happen, these

two conditions must hold L 1 and L 2 at both the sites. This implies that at some instant

in time let us say t both Si and Sj have their own requests in the top of the request queue,

and the condition L 1 holds at them. 

So, without loss of generality, assume that Si timestamp is smaller than smaller than, the

timestamp  of  the  request  j.  So,  from  condition  L  1  and  FIFO  property  of  the

communication channel, it is clear that at instant t, the request of Si must be present in

the request queue of j. So, this implies that Sj’s request is at the top of its own request

queue, when a smaller timestamp requests Si’s request is present in the request queue of

j, and this is a contradiction. So, hence it is proved that Lamports algorithm achieves the

mutual exclusion.

Another algorithm, another theorem is about Lamports algorithm, is about fairness. So,

Lamports  algorithm  is  fair.  So,  I  have  told  you  in  the  beginning  that,  this  lampard

algorithm  is  fair  algorithm.  The  proof  goes  like  this,  the  proof  is  by  contradiction.

Suppose a site Si’s request has a smaller timestamp than the request of another site Sj

and Sj is able to execute the critical section before Si. So, for easy to execute the critical

section, it has to satisfy the conditions L 1 and L 2, this implies that at some instant in

time t Sj has its own request at the top of its queue, and it has also received the message

with the timestamp,  larger than the timestamp of its  request from all  other sites,  but

request queue at a site is ordered by the timestamp, and according to the assumption Si



has the lower timestamp. So, Si’s the request must be placed ahead of Sj’s request in the

request queue, and this is a contradiction. So, this basically proves that the Lamports

algorithm is fair.

Lamports algorithm examples. Let us have three sites S 1 S 2 and S 3 participating in the

distributed mutual exclusion. Now site S 1 and S 2 are requesting for the critical section.

So, S 1 will send these arrows, and S 2 also will send or broadcast this message to all

other sites.

Now, S 2, S 1 after receiving. So, these sites are, now S 2 after receiving the message

from S 1 compares with its own timestamp, or a request timestamp, and and particular

process. So, 1 comma 2. So, basically it is found that the incoming request, is having

lower timestamp, so it will send a reply, back to S 1 and similarly S 3 is also neither

requesting, nor it is executing critical section, it will also send the reply. So, S 1 will

receive the replies from all other sites. So, now, S 1 will enter into the critical section.

Now N site S 1 exists the critical section then it has to send the release message. So,

release message will be sent to all other sites, and after receiving the release message,

site S 2 will basically, will found itself on the top of the queue 

Now, after receiving the reply message also from S 1, the S 3 can go into the critical

section . So, if you see the performance of Lamports algorithm for each critical section

execution, Lamports algorithm requires; N minus 1 request messages, N minus 1 reply

messages, and N minus 1 release messages. So, the Lamports algorithm required 3 N

minus 1 messages per critical section invocation.

The  synchronization  delay  of  this  algorithm  is  t.  So,  that  you  can  see  that  once  a

particular process S 1 exists the critical section, then it requires this message exchange;

that is the release message to flow, and that will take only t time till S 2 can go into the

critical section again. So, the synchronization delay in this particular algorithm is given

by t.

Optimization of this algorithm in Lamports algorithm reply messages can be omitted in

certain conditions. for example, if site Sj receives a request message from Si, after it has

sent its own request message with a timestamp higher than the timestamp of site Si’s

request then site Sj, need not send the reply message to the site Si why, because and Sj’s

timestamp is lower. So, it  is having higher priority. So, this  is  because when Si’s Si



receives the site Sj’s request with the timestamp higher than its own, it can conclude that

site Sj does not have any smaller timestamp requests, which is still pending. With this

optimization Lamports  algorithm require that,  between 3 N minus 1 to 2 N minus 1

messages per critical section invocation.

Now, the next algorithm which we are going to discuss, in the non token based approach

is called the Recart Agarwala algorithm. The Recart Agarwala algorithm assumes the

communication channel are FIFO also. In this algorithm same assumption is there, the

algorithm  uses  only  two  types  of  messages;  request  and  reply.  So,  this  particular

algorithm is not going to use the release message. The process sends a request message

to all other processes, to request their permission to enter the critical section.

A process sends a reply message to a process, to give its permission to that particular

process. So, processes used Lamport style logical clocks to assign the timestamp, to the

critical section request, and timestamps are used to decide the priority of the request.

Each process p i maintains data structure, which is called a request default array RDI, the

size of which is same as the number of processes, or the sites in the system.

So, initially the RDI’S for all  INJ, they are equal to, they are initialized to zero. So,

whenever p i differs the request by pj, it sets RDI of j is equal to 1, and after it has send a

reply back to pj, it resets again RDI of j is equal to 0. Let us see the use of this default

replies in this Recart Agarwala algorithm.

Description of the algorithm. So, the first step of the algorithm is requesting the critical

section.  So, when a site Si want to enter the critical  section,  it  broadcasts  timestamp

request message to all other sites. now when Sj receives a request message from site Si,

it sends a reply to the site Si, if the site Sj is neither requesting nor executing critical

section, or if the site Sj is requesting and Si’s request timestamp is smaller than Sj’s own

timestamp, then also it will send a reply; otherwise the reply is deferred, and Sj will set

the RD parameter of i is equal to 1.

Now, second step of this  algorithm is executing the critical  section site Si enters the

critical section, after it has received the reply message, from every site it sent a request

message. When a site Si exits the critical section, it sends all the default reply messages.

So, for all j’s, if RDI of j is equal to 1, then it sends our reply message to Sj and sets RD

parameter to 0. Note that when site receives a message it updates its clock using the



timestamps, which are basically piggy bagged in the messages . So, when Si takes up our

request  for  critical  section  for  processing,  it  updates  its  local  clock  and  assigns  the

timestamp to the request.

Now, correctness: Recart Agarwala algorithm achieves mutual exclusion. So, proof is by

contradiction. Suppose two sites Si and Sj are executing in the into the critical section

concurrently.  Si’s requests  has  higher  priority  than  the  request  of  Sj.  clearly  Si’s Si

receives Sj’s request, after it has made its own request. thus Sj can concurrently execute

the critical section with Si, only if Si’s, Si returns a reply to Sj ,in response to Sj’s request

before Si exits the critical section; however, this is impossible, as per the algorithm is

concerned, because Sj’s request as the lower priority. So, it will differ it. So, that is why

both the assumption, that Si and Sj both are executing critical section, is contradicted.

Therefore, Recart Agrwala algorithm achieves mutual exclusion.

Recart Agarwala algorithm example. Assume that site S 1 and S 2 are requesting for the

critical section, and they will send the message to all other processes.

Now, you can see that when S 1 will receive this particular message, from S 2 and the

timestamp of S 2, is basically higher than the timestamp of S 1. So, S 1 is having higher

priority. So, it will differ it,  and put in the data structure RD of i the value of j will

become 1.

Now, after receiving the replies from all other sites, these are the reply messages, the site

S 1 will go into the critical section, when site Si S 1 exists the critical section, then it will

send the replies to the differed messages. So, basically the request which was deferred, it

will send the reply to that particular message.

Now, S 2 which is also interested to go in a critical section. Now at this point of time it

has received the replies from all other message, and it will enter into the critical section.

Performance  of  this  algorithm,  for  each  critical  section  execution  Recart  Agarwala

algorithm requires only two types of messages; that is request and reply, and N minus 1

number of request messages, N minus 1 number of reply messages. So, total number of

messages required per critical  section execution in Recart  Agarwala algorithm is 2 N

minus 1 messages only 



Synchronization delay is the same, as you can see in this particular picture that, once site

S 1 has come out of a critical section that will take t time to send the default messages,

then only the next process, which has requested to go in a critical section, can basically

enter into critical section. So, the synchronization delay s t is basically t that we have

expressed here in this algorithm 

So, the conclusion; Mutual exclusion is fundamental problem in a distributed computing

system, where concurrent accesses to the shared resource or a data, is serialized. Mutual

exclusion in a distributed system requires not only one process be allowed to execute the

critical section, at any given time, and also ensures the fairness at the same point of time.

So, in this lecture, we have discussed about the concepts of distributed mutual exclusion,

and we have also seen the non token based approaches;  like Lampert  algorithm and

Recart Agarwala algorithm, to basically achieve distributed mutual exclusion. So, in the

upcoming lecture,  we will discuss about the other schemes,  which are quorum based

schemes, and token based approaches.

Thank you. 


